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Intelligent Systems for Aeronautics
(RTO EN-022 / AVT-095)

Executive Summary 

Intelligent Systems (IS) are nature-inspired problem solving tools and methodologies that have recently
become important in information technology applications. Artificially intelligent systems use computers to
emulate various faculties of human intelligence, and biological metaphors. They use a combination of
symbolic and sub-symbolic systems capable of developing human-like cognitive skills and intelligence, not
just systems capable of doing things humans do not do well. Intelligent systems are ideally suited for tasks
such as search and optimization, pattern recognition and matching, planning, uncertainty management,
control and adaptation.

These lecture notes approach IS from two perspectives: techniques and applications. The emphasis is on
aeronautical and space applications of IS, rather than basic research or tool development. The objectives of
this NATO Research and Technology Organisation (RTO) sponsored Lecture series is to provide a series of
comprehensive lectures by leading experts:

1. to enable the understanding of the concept, history, and benefits of intelligent system technologies;

2. to enable an understanding of the areas of applicability of IS technologies to aeronautics and space;

3. to enable an understanding of the state-of-the-art applications of IS technologies in aeronautics and
space.

The lectures were intended to accommodate attendees of both novice and advanced levels of technical
expertise.

For this purpose, the following techniques commonly used in IS were reviewed: decision strategy tools
based on game theory (Dr. J. Périaux, MDBA, France), neural network techniques for fault identification
(Prof. M. Innocenti, U. Pisa, Italy), genetic algorithms (Dr. M. Anderson, Sverdrup Technology, USA;
Dr. D. Quagliarella, CIRA, Italy) and multi-agent theory (Dr. I. Degirmenciyan, MDBA, France)

These techniques were illustrated by numerous applications: optimal air combat tactics
(Dr. K. Krishnakumar, NASA Ames), control of unmanned air vehicles (Dr. M. Ricard, Draper Lab, USA),
air combat simulation (Dr. I. Degirmenciyan, MDBA, France), space exploration (Dr. R. Doyle, JPL,
USA), unmanned aircraft navigation and formation control (Prof. M. Innocenti, U. Pisa, Italy), missile
design (Dr. M. Anderson, Sverdrup Technology, USA), airfoil design (Dr. D. Quagliarella, CIRA, Italy) and
finally analysis of rocket plume data for condition monitoring (Prof. K. Whitaker, U. Alabama, USA). Most
of these applications have a clear military aspect, whether at the system design level (missile design, control
of unmanned air vehicles) or at operational level (optimal air combat tactics, unmanned aircraft formation
control, air combat simulation), hence highlighting the relevance and importance of Intelligent Systems for
military issues.

G. Degrez1 & K. Krishnakumar.2
1von Kármán Institute, Belgium & 2NASA Ames, USA

Lecture Series Editors
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Systèmes intelligents pour l’aéronautique
(RTO EN-022 / AVT-095)

Synthèse 

Les systèmes intelligents (SI) sont des outils et des méthodologies de résolution de problèmes, d’inspiration
humaine, qui ont récemment pris de l’importance dans les applications des technologies de l’information.
Les systèmes d’intelligence artificielle font appel à des ordinateurs et à des métaphores biologiques pour
imiter les différentes facultés de l’intelligence humaine. Ils exploitent en combinaison des systèmes
symboliques et sous-symboliques capables de développer des compétences cognitives et de l’intelligence
pseudo-humaines et non pas simplement des systèmes capables de réaliser ce que l’être humain ne réalise
pas bien. Les systèmes intelligents sont idéalement adaptés à des tâches telles que la recherche et
l’optimisation, la reconnaissance des formes, la planification, la gestion de l’incertitude, le contrôle et
l’adaptation.

Ce support de cours aborde les systèmes intelligents sous deux angles différents : techniques et
applications. L’accent est mis sur les applications aéronautiques et spatiales des SI plutôt que la recherche
de base ou le développement d’outils. Ce cycle de conférences organisé par l’Organisation OTAN pour la
recherche et la technologie (RTO) a pour objectif de proposer une série de conférences complètes
présentées par d’éminents spécialistes du domaine afin de permettre de mieux comprendre :

1. le concept, l’historique, et les avantages des technologies des systèmes intelligents;

2. les domaines d’application des technologies des SI pour l’aéronautique et l’espace;

3. les applications de pointe des technologies des SI pour l’aéronautique et l’espace.

Les conférences sont destinées à des participants de tous niveaux de compétence technique, du novice
jusqu’au spécialiste.

Dans cette optique, les techniques suivantes, couramment employées en IS, ont été examinées : des outils
de prise de décisions stratégiques basés sur la théorie des jeux (Dr. J. Périaux, MDBA, France), des
techniques de réseaux neuronaux pour l’identification des défaillances (Prof. M. Innocenti, U. Pisa, Italie),
des algorithmes génétiques (Dr. M. Anderson, Sverdrup Technology, USA; Dr. D Quagliarella, CIRA,
Italie), et des théories multi-agents (Dr. I. Degirmenciyan, MDBA, France)

Ces techniques ont été illustrées par de nombreuses applications : les tactiques optimales de combat aérien
(Dr. K Krishnakumar, NASA, Ames), le pilotage des véhicules aériens sans pilote (Dr. M. Ricard, Draper
Lab, USA), la simulation du combat aérien (Dr. I. Degirmenciyan, MDBA, France), l’exploration de
l’espace (Dr. R. Doyle, JPL, USA), la navigation et le contrôle de formation des véhicules sans pilote
(Prof. M. Innocenti, U. Pisa, Italie), la conception des missiles (Dr. M. Anderson, Svedrup Technology,
USA), la conception des profils aérodynamiques (Dr. D. Quagliarella, CIRA, Italie), et finalement l’analyse
des données de panache des moteurs fusées pour le contrôle de l’état du moteur (Prof. K. Whitaker,
U. Alabama, USA). La plupart de ces applications ont des implications militaires évidentes, soit au niveau
de la conception du système (conception des missiles, pilotage des véhicules aériens sans pilote) soit au
niveau opérationnel (les tactiques optimales de combat, le contrôle d’aéronefs sans pilote en formation, la
simulation du combat aérien), ce qui fait ressortir l’intérêt et l’importance de systèmes intelligents pour
applications militaires.

G. Degrez1 & K. Krishnakumar.2
1von Kármán Institute, Belgium & 2NASA Ames, USA

Lecture Series Editors

iv



Contents

Page

Executive Summary iii

Synthèse iv
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Preface

Intelligent Systems (IS) embody varying degrees of representation of biological and cognitive systems for
efficient solution of complex problems. In our society today, intelligent systems have become extremely
fascinating tools for significantly improving the trends in information technology applications. Intelligent
systems are ideally suited for tasks such as search and optimization, pattern recognition and matching, planning,
uncertainty management, control and adaptation. This lecture notes will approach IS from two ends: techniques
and applications. The emphasis is on aeronautical and space applications of IS, rather than basic research or tool
development.

The objectives of this NATO Research and Technology Office (RTO) sponsored Lecture series is to provide a
series of comprehensive lectures by leading experts.

1. To enable the understanding of the concept, history, and benefits of intelligent system technologies;

2. To enable an understanding of the areas of applicability of IS technologies to aeronautics and space;

3. To enable an understanding of the state-of-the-art applications of IS technologies in aeronautics and space.
The lectures are intended to accommodate attendees of both novice and advanced levels of technical
expertise.

G. Degrez1 & K. Krishnakumar.2
1Von Kármán Institute, Belgium & 2NASA Ames, USA

Lecture Series Editors
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Intelligent Systems For Aerospace Engineering – An Overview

K. KrishnaKumar
NeuroEngineering Laboratory
NASA Ames Research Center

MS 269-1, Moffett Field
Cambridge, MA 02139-3563 USA

kkumar@mail.arc.nasa.gov

1 Abstract
Intelligent systems are nature-inspired, mathematically sound, computationally intensive
problem solving tools and methodologies that have become extremely important for advancing
the current trends in information technology. Artificially intelligent systems currently utilize
computers to emulate various faculties of human intelligence and biological metaphors. They use
a combination of symbolic and sub-symbolic systems capable of evolving human cognitive skills
and intelligence, not just systems capable of doing things humans do not do well. Intelligent
systems are ideally suited for tasks such as search and optimization, pattern recognition and
matching, planning, uncertainty management, control, and adaptation.  In this paper, the
intelligent system technologies and their application potential are highlighted via several
examples.

2 Defining Intelligent Systems
Science has evolved with our efforts towards understanding and mimicking nature, through
inventions and discoveries, hypotheses and proofs, success and failures. The evolution of
computers marks the era of our success in building systems that can perform actions of a
repetitive kind, those which are difficult or time consuming if done by humans. This has helped
enhance our efforts towards studying and understanding the intelligence of biological systems
and applying this knowledge towards building artificially intelligent systems.

We attribute intelligence to various faculties. Intelligence is often identified in terms of
competence, expertise, talent, schooling, IQ, and social interaction. From the perspective of
computation, the intelligence of a system is characterized by its flexibility, adaptability, memory,
learning, temporal dynamics, reasoning, and the ability to manage uncertain and imprecise
information. Capabilities such as information gathering, understanding, making inferences, and
applying it to understand and solve new problems efficiently are observed to be critical features
of such systems. Intelligence has been defined in several ways:

• the ability to learn or understand from experience
• ability to acquire and retain knowledge
• mental ability
• the ability to respond quickly and successfully to a new situation
• use of the faculty of reason in solving problems, directing conduct, etc. effectively

Paper presented at the RTO AVT Course on “Intelligent Systems for Aeronautics”,
held in Rhode-Saint-Genèse, Belgium, 13-17 May 2002, and published in RTO-EN-022.
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Although Artificial Intelligence (AI) is the corner stone on which Intelligent System (IS)
technologies are built, there are distinguishing differences between AI and IS. These differences
are highlighted next.

AI has evolved with two distinct dimensions (Russell and Norvig, 1995), one is “humanistic AI”
and the other is “rationalistic AI”. Humanistic AI examines machines that think and act like-
humans, whereas rationalistic AI examines machines that can be built on the understanding of
intelligent human behavior. Some definitions of AI related to these ideas are presented below.

Humanistic AI
“The art of creating machines that perform functions that require intelligence when performed by
people” (Kurzweil, 1990)
“The study of how to make computers do things at which, at the moment, people are better”
(Rich and Knight, 1991)

Rationalistic AI
“A field of study that seeks to explain and emulate intelligent behavior in terms of computational
processes” (Schalkoff, 1990)
“The branch of computer science that is concerned with the automation of intelligent behavior”
(Luger and Stubblefield, 1993)

Intelligent systems as envisioned today are mostly modeled after rationalistic AI. They examine
intelligent behavior using the models of human systems that enable intelligent behavior. In
addition, IS has distinguished itself from AI by including intelligent behavior as seen in nature as
a whole. This intelligent behavior includes biological genetics (distributed information),
evolution (survivability), chaos (structured randomness), and natural adaptation (sufficability).
Also, innovations in IS are driven by the need to solve complex problems with improving
efficiencies. This improvement could be over a period of computing time, real-time, or over a set
of problems encountered. The idea is not to converge to an optimal solution but to find solutions
that are better than their predecessors. The underlying assumption here is that the problem
domain is either too enormous with few good solutions or is non stationary.

So how can one define intelligent systems? This is indeed a difficult question and is subject to a
great deal of debate. From the author’s view point, an intelligent system is one that emulates
some aspects of intelligence exhibited by nature. These include:

1. Learning
2. Adaptability
3. Robustness across problem domains
4. Improving efficiency (over time and/or space)
5. Information compression (data to knowledge)
6. Extrapolated reasoning

The debate of what is an intelligent system will be around as long as the definition of intelligence
itself eludes us. From the practical view point, IS technologies have made it easier to achieve
some level of complexity in aerospace applications just as much computers have enabled certain
level of complexity
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3 Role of Intelligent Systems in Aerospace Engineering
Intelligent System (IS) applications have gained popularity among aerospace professionals in the
last decade due to the ease with which several of the IS tools can be implemented. In addition to
this ease of implementation, IS has been shown to solve difficult problems more efficiently.
Another advantage that IS practitioners have seen is complex ideas can be implemented and
tested with rapid development cycles. All of these rely heavily on the ubiquitous nature of
computing machines with the power of 20th century supercomputers. The applications have
gained popularity among the technical and user communities for both intellectual curiosity and
for practical reasons. Some of the novel ideas using IS include spacecraft autonomy, aircraft
control, modeling, airfoil design, satellite operations, missile design, and vehicle health
management. In essence one can say that the IS technologies help achieve efficiency, robustness
in addition to providing human-like capabilities such as pattern recognition, learning, long-term
optimization, planning, and self-improvement.

The role of intelligent systems in aerospace engineering is two-fold: (1) function as intelligent
assistants to augment human expertise; and (2) act as a substitute for human expertise in
endeavors that save cost, time, and life. For example, intelligent systems assist humans in solving
difficult optimization problem by their shear ability to robustly search through myriad of choices.
In contrast, intelligent systems are used on autonomous rovers to both save cost and human lives.

In the next several sections, we present some areas of applications using intelligent systems and
highlight the benefits using examples related to aerospace engineering.

3.1 Intelligent Systems for Modeling
Modeling could be thought of as a representation of available information. Intelligent systems
provide two very important features for modeling: generalization and robustness. Generalization
implies that the model could be used not only to represent just the data gathered but the
knowledge the data represents. Robustness can be defined as the system's ability to perform
within certain bounds of its nominal (without uncertainty) performance in the presence of
bounded uncertainty. Several techniques such as neural networks, fuzzy logic, expert systems,
etc have been routinely used by aerospace engineers for modeling. Knowledge representation in
general contains syntax and semantics. Syntax is the constitution of sentences and Semantics is
the interpretation of sentences. Examples of knowledge representation include

• Mathematical Equations (Ex: ARMA Models: Autoregressive moving average models
are created using the least-square technique to represent linear relationship between
inputs and outputs.)

• Rule-based systems. Reasoning is a process of arriving at a conclusion based on a
collection of premises. Expert system based reasoning is one of the popular rule-based
inferencing system that is in use today. This consists of three parts: a knowledge base (a
set of rules and known facts); acquired data (derived facts and data); and an inference
engine (reasoning logic).

• Fuzzy Models: Given the choice of system input and output variables, their linguistic
modifiers with the associated fuzzy membership functions, an appropriate implication
function, aggregation function, and defuzzification operator,  if so desired, a fuzzy model
that represents the system can be specified by a set of rules, their structure, and the fuzzy
membership function parameters. Fuzzy systems model qualitative and quantitative non-
linearity of systems. Attractive features include reduced design complexity, rapid
prototyping, flexibility, simplicity, cost effectiveness, and inherent parallelism. This
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explains the popularity of fuzzy systems in diverse application areas such as control,
prediction, evaluation, cognition, analysis, and information management.

• Neural Models: Artificial Neural Networks (ANNs) are brain-inspired connectionist
models that consist of many similar linear and nonlinear computational elements
connected in complex patterns.  The simple computational elements, also known as
neurons, when associated in complex patterns, have the ability to perform tasks such as
memory recall, pattern recognition, and learning.  The ability of neural networks to learn
from repeated exposure to system characteristics has made them a popular choice for
many applications in image processing, system identification and control, pattern
recognition and classification, financial prediction, and signal processing. Neural models
can be sigmoidal networks, associative neural networks, radial basis function neural
networks, or clustering networks. The choices are many.

• Tree structures: A tree structure is an algorithm for placing and locating objects in a
database. The algorithm finds data by repeatedly making choices at decision points called
nodes. A node can have branches (also called children) whose number can vary from two
to several dozens. The structure is straightforward, but in terms of the number of nodes
and children, a tree can be gigantic.

In aerospace applications, modeling is ubiquitous. Intelligent modeling tools are used for
operator behavior modeling, flight test data modeling, aerodynamic modeling for design, etc.

3.1.1 Improved Robustness using Fuzzification
One of the benefits of fuzzy logic modeling is the fuzzy granularization that is obtained by
defining fuzzy sets for the inputs and outputs of a system. Krishnakumar and Kulkarni (1998)
outlined an approach that combines this granularization advantage with the knowledge available
through an existing linear dynamic controller, to arrive at a powerful hybrid technique. This
technique provides an outer fuzzy shell to existing control techniques and therefore combines the
strengths of conventional as well as fuzzy control methodologies. The equivalent fuzzy dynamic
controller is shown in Figure 1. It was also shown via a non-linear robustness analysis, that
fuzzification of the inputs and outputs lead to better robustness to system uncertainties via the
manipulation of the distance between the membership functions.

Figure 1.  Equivalent Fuzzy Dynamic Controller Architecture

3.2 Intelligent Systems for Search
If the solution to a task can be represented by a set of N parameters, then the job of finding this
solution can be thought of as a search in an N-dimensional space. This is referred to simply as
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the search space. More generally, if  the solution to a task can be represented using a
representation scheme, R, then the search space is the set of all possible configurations that may
be represented in R.

Search techniques are also employed in problems where we want to determine if we can reach
the desired goal state from an initial state, to minimize the cost in reaching the goal state, etc.
The state-space approach is one of the primary representations for such problems.  The state-
space consists of an initial state and a set of operators.  Application of the operators produces a
sequence of new states called the path.  A goal test is defined and tested to determine when a
new state is the desired goal state.

Search techniques are routinely employed in combinatorial optimization. Some tasks involve
combining a set of entities in a specific way (e.g.  the  task  of building a combat tactics plan). A
general combinatorial task involves deciding (a) the specifications of those  entities  (e.g.  what
type of aircraft, the opponents aircraft descriptions, number of aircraft, etc), and  (b) the way in
which those entities are brought  together  (e.g. various elementary tactics formations and  their
relative positions). If the resulting combination of entities can in some  way  be  given  a fitness   
score,  then  combinatorial optimization is the task of designing a set of entities,  and  deciding
how  they  must  be configured,  so  as  to  give  maximum  fitness. Some of the popular search
techniques used by the intelligent systems community includes:

• Golden Section: The most used one-dimensional search technique that guarantees an
optimum in a finite amount of time is the Golden section search technique. This
technique belongs to the interval reduction family in which the interval is reduced by
throwing out regions that definitely do not contain the optimum.

• Breadth-first Search: Search a state space by constructing a tree consisting of a set of
leaves and branches. The algorithm defines a way to move through the tree structure.

• Depth-first Search:  Instead of completely searching each level of the tree before going
deeper, the algorithm follows a single branch of the tree down as many levels as possible
until a solution or a dead-end is reached.

• Heuristic Dynamic Programming (HDP): HDP is based on an attempt to approximate
Howard’s form of the Bellman equation (Howard, 1960):
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where xt is the state vector, ut is the control vector, UPM(.) is the one stage Performance

Measure function,  f(.,.,.) is the model of the system, and ( )γ γ0 1< ≤ is the discount

factor.  Variations of HDP are used in solving combinatorial optimization problems.

• A*Search: This is the most famous search algorithm used by the AI community. Here
we combine the cost estimate J(n) of traversing from  step n to the goal state and U(n)
which is the known path cost from the start node to step n.
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• Genetic Algorithms: A type of evolutionary computation devised by John Holland
(Holland, 1975). A model of machine learning that uses a genetic/evolutionary metaphor.
Implementations typically use fixed-length  character strings to  represent their genetic
information, together with a population of  individuals  which undergo  crossover  and
mutation  in  order to find interesting regions of the search space.

In aerospace applications, intelligent search techniques are used typically for searching a design
space, searching for an optimal scheduling and planning schemes, and for solving combinatorial
optimization problems. In the example presented next, we examine the use of genetic algorithms
for finding optimal tactics formation.

3.2.1 Application: Search for Optimal Air Combat Tactics
The complete design and specification of air combat tactics for many-vs.-many engagements
poses a considerable challenge to tactical planners. While solutions have been developed for one-
vs.-one or few-vs.-few encounters, the results may not generalize to larger engagements where
formation tactics become increasingly important. The most effective formation tactics employ a
basic fighting unit of two aircraft (called a section or element) (Shaw, 1988). Since this is how all
fighter pilots learn their craft, it would be most effective for optimized tactics not to deviate from
this established tactical doctrine. Accordingly, software tactics modules that employ basic
fighting units of two aircraft were developed. Since large numbers of fighter aircraft are difficult
to control, formation tactics for large groups may be developed using a hierarchical structure
consisting of smaller units or divisions; for example, a four-airplane division called the fluid four
consists of two elements. Each element consists of two aircraft, but they are treated as a unit.
This hierarchical concept is used to develop a GA-based approach to search for optimal air
combat tactics. Given a palette of air combat maneuvers and standard small-formation tactics as
building blocks, GAs are used to determine how they can be integrated to produce large fighting
groups that optimize overall combat effectiveness.

Tactics implementation proceeds as follows (The complete simulation environment is presented
in Figure 2. For more details, see (Mulgund et al, 2001)):

• Define a set of commonly-used element and division formations as well as the underlying
tactical maneuvers and attack tactics.

• Develop a set of principles for aggregating the small formation tactics for large MvN
engagements, and implement a method for doing so in the GA software. To illustrate,
consider a team consisting of four aircraft. Using only the fighting wing and double-attack,
the possible team formations are shown in Figure 3 (assuming both elements use the same
two-ship formation). A similar approach can be used to develop large division formations
from smaller 2-ship and 4-ship groupings.

• Use the resultant formation tactics to drive the engagement, and evaluate the results via the
performance metric generator.

• Search for the best MvN engagement tactics so as to optimize the performance metrics.
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Figure 2. Combat Tactics Design Environment
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Figure 3. Potential Four-Aircraft Formations.

3.3 Intelligent Systems for Design
Aerospace systems are complex in nature and their design interdisciplinary. For example, design
optimization conducted individually on subsystems such as wing, propulsion, and automatic
control will not integrate without extensive redesign. Even individual design of these subsystems
require interaction of several subsystems. Intelligent systems can help in many ways to enhance
this experience. Several researchers have shown the benefits of neural networks and fuzzy logic
for representation of known data and designer expertise. Genetic algorithms have been routinely
used for searching through large spaces with several constraints and subsystem interactions. A
generic representation of the design philosophy using intelligent system features are shown in
Figure 4. In the design application presented next, Neural networks are used for representation of
data (modeling) and genetic algorithms are used to search for the type of inputs to be used for the
neural networks.
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3.3.1 Application: Engine Estimator Design
One of the common objectives of aircraft engine control is to enhance engine performance under
deteriorated conditions.  To maximize engine performance efficiently under degraded conditions,
a fault tolerant engine control scheme can be applied.  The first step to implement the fault
tolerant engine control architecture is developing an engine performance estimator.  This
application focuses on designing an engine performance estimator using a combination of a
genetic algorithm (GA) and a radial basis function neural network (RBFNN) for the
implementation.

Generally, traditional engine performance estimators, such Kalman filter estimator, involves
intensive computational procedures because of engines’ physical complexity which requires a
large number of measurements to be taken and processed. To overcome computational
complexity, model estimation using neural networks has emerged. Neural network-based model
estimation has been applied to areas such as optics, robotics, and system control.  Attracted by
the advantages of neural networks, the recent studies of fault tolerance have employed neural
network architectures. In these studies, the input selection is executed by simple inspection of
data files. This manual inspection can be replaced by automatic inspection using GAs. The need
for the design that involves selecting the best inputs is driven by the cost of sensors. In this case
fewer the sensors the better the cost.

Figure 4. An Intelligent Design Approach

To apply GAs to this problem, the parameter performance can be evaluated by an objective
function (performance index or PI).  Regularly, a quadratic error measure is used for the
objective function.  The error is defined as the difference between desired performance and the
current design's performance.
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Figure 4. GA-RBFNN Architecture

GA-RBFNN Architecture: The GA-RBFNN architecture is shown in Figure 5.  The Genetic
Algorithms picks “n” inputs out of the possible 21 variables shown in table 1. The quantity “n” is
a user choice. For example, if n=5, the GA has the following chromosome representation

10110 10011 11011 10111 00110
Input 1 Input 2 Input 3 Input 4 Input 5

We use a 5 bit representation to cover the 21 possibilities. Since 5 bits give us 32 possibilities,
there will be multiple mapping for some of the variables.

The data from the first 150 seconds (300 data points with 0.5 seconds of step size) is used for the
RBFNN’s training.  For the GA fitness, all the 500 data points are utilized. This way, we
incorporate a combination of training and validation data into the GA fitness.

The RBFNN produces one output, either compressor stall margin (sm27) or thrust (fn). The
output is then compared with a desired performance of the corresponding performance measure
(desired sm27 or fn).  The difference between the output from the RBFNN and the desired
performance becomes the estimation error.  Squaring the error and summing it up over the time
range (500 data points) results in a fitness function of the entire system. For more details, please
see Krishnakumar and Hachisako (2000).

3.4 Intelligent Systems for Control
There are two main aspects to intelligent control: (1) the "intelligence" to analyze the changing
environment; and (2) the resources to respond to the changing environment.  Intelligence
connotes the analytical ability to comprehend and react to the changing environment. Resources
connote the physical components of the system that are necessary to react to the environment. In
this work, we concentrate on the need to harvest and interpret the information from the network
of sensors and to apply it for control such that good performance is maintained under any of the
following situations:
• Loss of control due to failure
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• Aircraft characteristics change due to damage (center of gravity, inertia, etc.)
• Changing operating conditions (altitude, mach, etc.)
• Environmental effects due to wind and turbulence

Intelligent control applications focus on control problems that otherwise cannot be solved, or
cannot be solved in a satisfactory way by traditional control techniques alone. Intelligent control
as practiced today encompasses many fields from conventional control such as optimal control,
robust control, stochastic control, linear control, and nonlinear control, as well as the more recent
fuzzy, genetic, and neuro-control technologies. In the next subsection, intelligent control is
classified based on the idea of self-improvement as the goal toward higher levels of intelligence.

3.4.1 Application: Levels of Intelligent Control
In a general sense, an intelligent controller design can be stated as the following:

given the dynamic system as:
 
X(t+1) = f(X(t),U(t),t)+η; where X are the state variables, U is the control vector,
 and η is an unknown disturbance

a set of goals generated as a function of time as

Xg(t+1) = g(Xg(t),X(t),t)

a performance measure as:

J(t+1)= ℑ(M(Xg(t),X(t),U(t),t));  where ℑ is an operator (usually summation over T)

and a planning function as

P(t+1) = p(X(t),P(t),t,ν); where ν is system faults and emergencies

the intelligent controller needs to arrive at a control, U(t), such that the system (in the order of
priority)

• is locally stable (includes handling quality of the system)
• follows closely the desired path (closeness defined by the performance measure)
• constantly optimizes long-term and short-term goals
• reacts to changing environments by properly adapting the planning functionality.

Over the past decade, several innovative control architectures utilizing the intelligent control
tools have been proposed. We believe that a practical way to accommodate the above needs is to
approach the system as having various levels of capabilities for self-improvement. Self-
improvement is an important goal of human intelligence. Self-improvement is quantifiable and
measurable in various ways. By defining intelligent Control with various levels of intelligence,
the definition is left ‘open ended’ such that it will not become obsolete, and it will accommodate
easily the innovations that will inevitably come from the contributions of such fields as cognitive
science, computer hardware, sensors and actuators, learning theory, and control architectures.
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KrishnaKumar (1997) has proposed a classification scheme based on the ability of the control
architecture for self-improvement (see Table 1).  The classification scheme divides the control
architectures among levels of intelligent control (LIC). For instance, most of the proposed
architectures can be divided among level 0, level 1, level 2, and level 3 intelligent control
schemes. Based on this classification scheme, several seemingly differing control architectures
can be looked at as achieving similar goals.

Table 1.  The Levels of Intelligent Control
Level Self improvement of Description
0 Tracking Error (TE) Robust Feedback Control: Error tends to zero.
1 TE + Control

Parameters (CP)
Adaptive Control: Robust feedback control with adaptive
control parameters (error tends to zero for non-nominal
operations; feedback control is self improving).

2 TE+CP+ Performance
Measure (PM)

Optimal Control: Robust, adaptive feedback control that
minimizes or maximizes a utility function over time.

3 TE+CP+PM+ Planning
Function

Planning Control: Level 2 + the ability to plan ahead of
time for uncertain situations, simulate, and model
uncertainties.

Level 0 Intelligent Control -- A Robust Controller: Self-improvement of Tracking Error (TE)
is an important goal of many control techniques. To achieve this, one designs robust feedback
controllers with constant gains that improve the error as time goes to infinity. We consider this as
“Level 0 Intelligent Control”.

Level 1 Intelligent Control -- An Adaptive Controller: Self-improvement of control
parameters towards the goal of achieving better tracking error or some error oriented goal, is the
next level in intelligent control. We consider this as “Level 1 intelligent Control”. This level is
essentially a robust feedback controller with adaptive parameters that helps the error tend to zero
for non-nominal operations and feedback controller is self improving.

Level 2 Intelligent Control -- An Optimal Controller: Self-improvement of an estimate of the
performance error (or some measure of performance over time) towards the goal of minimization
or maximization of an utility function over time (error tends to zero and a measure of
performance is optimized) is the next level in intelligent control. We consider this as “Level 2
Intelligent Control”.  This level is essentially a robust feedback controller with adaptive
parameters that helps the error tend to zero for non-nominal operations, feedback controller is
self improving, and a measure of performance that is self-improving is optimized over time.

Level 3 Intelligent Control -- A Planning Controller: In addition to level 2 capabilities, Level
3 Intelligent Control includes self- improvement of planning functions. Planning functions
include contingency planning, planning for emergencies, planning for faults, etc. These planning
functions could be static for Level 2 but needs to be self-improving for Level 3.

Figure 6 presents the implementation of a Level 2 Intelligent Control on a C-17 test bed at
NASA Ames research center. The levels as outlined earlier are labeled in the figure. It should be
noted that Level 0 is non-adaptive whereas Level 1 is adaptive. Level 1 is non-optimal whereas
Level 2 is optimal.
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RM: Reference Models: The pilot commands roll rate and aerodynamic normal and lateral accelerations through
stick and rudder pedal inputs. These commands are then transformed into body-axis rate commands, which also
include turn coordination, level turn compensation, and yaw-dampening terms. First-order reference models are used
to filter these commands in order to shape desired handing qualities.
PI Error Controller: Errors in roll rate, pitch rate, and yaw rate responses can be caused by inaccuracies in
aerodynamic estimates and model inversion. Unidentified damage or failures can also introduce additional errors. In
order to achieve a rate-command-attitude-hold (RCAH) system, a proportional-integral (PI) error controller is used
to correct for errors detected from roll rate, pitch rate, and yaw rate (p, q, r) feedback.
NN: On-Line Learning Neural Networks: The on-line learning neural networks work in conjunction with the error
controller. By recognizing patterns in the behavior of the error, the neural networks can learn to remove biases
through control augmentation commands. These commands prevent the integrators from having to windup to
remove error biases. By allowing integrators to operate at nominal levels, the neural networks enable the controller
to provide consistent handling qualities.
DI: Dynamic Inversion: Dynamic inversion is based upon feedback linearization theory. No gain-scheduling is
required, since gains are functions of aerodynamic stability and control derivative estimates and sensor feedback. To
perform the model inversion, acceleration commands are used to replace the actual accelerations in the quasi-linear
model. The model is then inverted to solve for the necessary control surface commands
CA: Control Allocation: An optimal control allocation technique is used to ensure that conventional flight control
surfaces will be utilized under normal operating conditions. Unconventional flight control surface allocations are
only utilized when the primary flight control surface commands exceed the known limits of deflection. For example,
in the longitudinal axis pitch rate control is normally provided through symmetric elevator deflections. If this
command should saturate, then the remaining portion of the command is applied to symmetric ailerons. If the
symmetric aileron command saturates, then the remaining portion of that command is applied to symmetric thrust.
The symmetric aileron command is limited, by the differential aileron command, so that secondary pitch control
does not interfere with primary roll control.
M: Pre-Trained Neural Network Model: A Levenberg-Marquardt (LM) multi-layer perceptron is used to provide
dynamic estimates for model inversion. The LM network is pre-trained with stability and control derivative data
generated by a Rapid Aircraft Modeler. This block can be replaced by other on-line derivative (parameter)
estimation techniques.
Critic 1 and 2:  Adaptive Critics are utilized to optimize the control allocation scheme and to shape the reference
model dynamics in the event of a failure.

Figure 6. Level 2 Intelligent Flight Control System
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3.5 Intelligent Systems for Training
Many characteristics of intelligent systems are readily applicable to training. Although training
entails many different areas of aerospace engineering, our experience has been with pilot
training. Figure 7 presents an implementation of an automated hover training system. This
system was implemented in a fixed-base simulation facility and was shown to provide basic
hover training skills with no human intervention. The neural network based intelligent system
adapts the helicopter dynamics to the student pilot and automatically changes the dynamics of
the helicopter as learning progresses. For more details, please see KrishnaKumar et al (1994)

Figure 7. Automated Training Using an Intelligent System

3.6 Intelligent Systems for Autonomous Agents
An Agent is anything that can be viewed as perceiving its environment through sensors and
acting upon that environment through effectors. An autonomous agent is shown in Figure 8. A
rational agent does the right thing. How successful the agent is measured using a performance
measure that is defined using goals. It is assumed that the agent has some percepts to satisfy
observability or sensing requirements. Knowledge of the environment (Model) and actions that
can be performed (Controllability) are implicit to the agent. Some of these are pre-programmed
and some are learnt on-line. An ideal rational agent optimizes the measure of performance.
Intelligent systems are used in different capacities such as knowledge representation,
adaptability, agent-to-agent interaction, planning, and optimization. For more details on agents,
see reference (Russell and Norvig, 1995).

3.7 Other Areas of Application
Intelligent systems can be embedded in almost any application where information needs to be
processed to provide a usable output. Some areas that were not specifically addressed earlier
include:

• Intelligent Systems for Decision Making
• Intelligent systems for planning and scheduling
• Intelligent systems for health management
• Intelligent systems for prediction
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• Intelligent systems for knowledge discovery

Figure 8. Intelligent Autonomous Agent Architecture (Russell and Norvig, 1995).

4 Future of Intelligent System Applications
Intelligent systems provide a means by which complex problems can be addressed and in many
cases solved to a satisfactory level. The benefits can be categorized as either immediate or in-the-
future. The immediate benefits are in applications of intelligent systems to areas where existing
methodologies are marginally satisfactory and incorporating intelligent systems provide better
efficiencies and solutions. Examples include: inverse design, adaptive control, optimal search,
etc. The future benefits are more exciting. Intelligent systems will help formulate and solve
problems such as brain-like control and decision-making, human-machine collaborative work,
instant speech recognition, thought control, human capability enhancement, advanced pattern
recognition, real-time scheduling, automated design, intelligent maneuvering for unmanned
aerial vehicles, and autonomous security search. On a cautious note, intelligent system
researchers should examine closely the analytical framework of their innovations. Analytical
framework along with standardization has been shown to be important for the ultimate ticket to
real implementations in aircraft applications.
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The ADEPT Framework for Intelligent Autonomy
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Abstract
This paper describes the design and implementation of Draper Laboratory’s All-Domain Execution and
Planning Technology (ADEPT) architecture for intelligent autonomy.  Intelligent autonomy is the ability to
plan and execute complex activities in a manner that provides rapid, effective response to stochastic and
dynamic mission events. Thus, intelligent autonomy enables the high-level reasoning and adaptive behavior
for an unmanned vehicle that is provided by an operator in man-in-the-loop systems.

Draper’s intelligent autonomy has architecture evolved over a decade and a half beginning in the mid 1980’s
[3, 4, 6 and 12] culminating in an operational experiment funded under DARPA’s Autonomous Minehunting
and Mapping Technologies (AMMT) unmanned undersea vehicle program [15].  ADEPT continues to be
refined through its application to current programs that involve air vehicles, satellites and higher-level
planning used to direct multiple vehicles.  The objective of ADEPT is to solidify a proven, dependable
software approach that can be quickly applied to new vehicles and domains.

The architecture can be viewed as a hierarchical extension of the sense-think-act paradigm of intelligence and
has strong parallels with the military’s Observe-Orient-Decide-Act (OODA) loop [14].  The key elements of
the architecture are planning and decision-making nodes comprising modules for situation assessment, plan
generation, plan implementation and coordination.  A reusable, object-oriented software framework has been
developed that implements these functions.  As the architecture is applied to new areas, only the application
specific software needs to be developed.

This paper describes the core architecture in detail and discusses how this has been applied in the undersea, air,
ground and space domains.

Introduction
In recent years, there has been a spectrum of development programs for air, space, ground, and underwater
vehicles with the desire for increasing degrees of autonomy.  Enabled by advances in intelligent autonomy,
autonomous vehicles will ultimately be employed by the military as a force multiplier and as a means of
reducing risk to military personnel and in nonmilitary applications in remote and hazardous locations,
including search and rescue during a fire or natural disasters.  For example, future missions of autonomous
Uninhabited Combat Air Vehicles (UCAVs) may include lethal air to ground missions for suppression of
enemy air defenses (SEAD), intelligence, surveillance, reconnaissance and targeting  (ISRT), and logistics re-
supply.  To successfully carry out these classes of missions, UCAVs will require highly adaptive autonomous
mission planning and control, real-time obstacle avoidance of both static and dynamic obstacles and path
planning for high speed flight in complex terrain.

Here Intelligent Autonomy refers to a vehicle’s capability of sensing its own state and the state of its
environment, and, based on this situational awareness, of planning and executing actions that are designed to
achieve specific objectives under defined constraints.  Thus, intelligent autonomy requires the development of
automated planning and control systems that plan the vehicle's mission prior to its deployment, control the
vehicle's state during the execution of the planned mission and replan the mission in order to accommodate
unanticipated events that may arise during mission execution.

Paper presented at the RTO AVT Course on “Intelligent Systems for Aeronautics”,
held in Rhode-Saint-Genèse, Belgium, 13-17 May 2002, and published in RTO-EN-022.
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As explained below, the challenges that intelligent autonomy must address are daunting: 1) developing and
executing plans of activities that meet mission objectives and honor constraints, 2) dealing with uncertainty,
and 3) providing a capability for dynamically adjusting a vehicle’s plan in real time.

First, multiple (and often conflicting) objectives must be pursued in the face of a variety of both implicit and
explicit constraints.  Representative mission objectives for an Unmanned Combat Air Vehicle (UCAV) might
include surveillance, reconnaissance, resupply, support and strike [10].  Implicit constraints are constraints that
are imposed by the vehicle design (e.g., its fuel carrying capacity, weapon stores carrying capacity,
performance envelope and subsystem capabilities). Explicit constraints are those that may be imposed by a
higher planning authority including:

1. a required probability of survival or mission success,

2. time or ordering constraints that may be imposed on the pursuit of specific mission objectives,

3. navigation constraints, and

4. constraints imposed by the time available to plan.

Second, the fact that intelligent autonomy must accommodate the significant uncertainty in the system’s
knowledge of the current and future “state of the world” (i.e., state of the vehicle and its environment) also
contributes to the complexity of the mission planning problem.  Because of this uncertainty, the formulation of
detailed plans far into the future or planning in advance for all possible contingencies is generally a futile
exercise. As a consequence, the ability to replan onboard the mission is essential for autonomous vehicle
applications, especially in poorly characterized environments where long endurance or a high probability of
mission success is required.

The third challenge, to replan the mission in real time due to changes in the environment, commander’s intent,
changing opportunities, etc., adds another layer of complexity to the mission planning problem. This is due not
only to the uncertainty with respect to the future state of the world that inevitably prevails at the time the
mission is originally planned, but also to unforeseen, externally influenced events that can arise during the
execution of the mission requiring a response in real time.  For example, a higher planning authority may
redefine the mission objectives or alter the constraints that are imposed on the pursuit of those objectives, the
mission environment (threats, weather, etc.) might change, the vehicle might sustain failures or damage, or
opportunities to accomplish additional objectives might arise.

Draper has designed the core ADEPT architecture to meet these intelligent autonomy challenges.  Draper’s
ADEPT architecture is a hierarchical, closed-loop, real-time mission and trajectory planning capability for
autonomous vehicles. This paper describes the development of ADEPT, and its application to a variety of
domains. The paper is organized as follows. Section 2 discusses the functional components of the architecture
and its roots from which it was developed, implemented and deployed in the highly successful DARPA
Autonomous Minehunting and Mapping Technology (AMMT) Program. Section 3 describes the object–
oriented design and implementation.  Section 4 discusses the diverse domains employing this architecture and
software.

Architecture Functional Description
ADEPT is based on Draper's core approach to autonomous mission planning systems [3]. The first fielded
operational implementation of this core architecture was for DARPA's Advanced Minehunting and Mapping
Technologies program.  Additional capabilities have been introduced under both corporate sponsored research
and externally funded programs.  To make the solution of complex problems tractable, the problems are
decomposed into simpler, decoupled subproblems that can be solved (nearly) independently.

Temporal hierarchical decompositions are often employed to simplify the implementation of the solution to
real-time, closed-loop planning problems [4, 8].  These decompositions are characterized by higher levels that
create plans with the greatest temporal scope (longest planning horizon) but with the least detail.  At lower
levels, the planning horizon becomes shorter (nearer term), but the level of detail of planned activities
increases.  The less detailed plans at the higher levels coordinate or guide the generation of solutions generated
at the lower levels.
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Figure 1: Characteristics of Solutions at Various Levels of the Hierarchy

Indeed, planning actions over extended periods of time at a high level of detail is futile because detailed
actions planned on the basis of a specific prediction of the future may become obsolete well before they are to
be executed due to an inability to accurately predict the future and impractical because the computational
resources required to develop detailed plans for complex objectives over extended periods of time may be
prohibitive.

Figure 2 shows the details of the functions performed at each level of the architecture in Figure 1. The key
elements are modules for situation assessment, plan generation, plan implementation, and coordination. Figure
2 shows plan implementation providing input to the system to be controlled. Note that in the three tier
hierarchical system shown in Figure 1, the higher level’s plan implementation output consists of planning
inputs to the next tier down.
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Figure 2: Functional Decomposition of an Autonomous System

The Monitoring Module validates best estimates of the sensed data and monitors the operation of the system
being controlled, as well as the environment in which it is operating, to detect departures from expectations.
Any departure could represent a developing problem or a new opportunity, and is passed along to the
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Diagnosis Module for interpretation.  If no departures are observed, the Plan Execution Module continues to
execute the current plan.

The Diagnosis Module analyzes departures identified by the Monitoring Module to determine their root cause
or, alternatively, their impact on the capabilities of the system being controlled.  The Diagnostic Module then
initiates the actions required to respond to the root causes or changes in capabilities.  If root causes cannot be
determined, the Diagnostic Module attempts to reconfigure the system being controlled to retain as much of
the systems capability as possible.  The diagnosis of what has happened is passed to the Plan Generation
Module to determine if the current plan needs to be modified to accommodate the changed circumstances.

The Plan Generation Module modifies the current plan when circumstances identified by the Diagnosis
Module require such modifications.  A new plan may be required in response to either problems or
opportunities that have been identified by the Diagnosis module.  In support of planning by a superior planning
level or in a decision support role for a human planner, it may be desirable for the Plan Generation function to
create a variety of plans that trade off among different levels of constraint and/or different objectives.
Furthermore, a variety of algorithms may be applied in generating plans and the choice of algorithm is guided
by the strategy input.  For example, a quick heuristic may be required if a new plan is needed immediately to
accommodate a serious (potentially mission or safety critical) problem that has been diagnosed.  In other
situations, it may be acceptable to continue to pursue the current plan while a more considered search of the
plan space is executed in an attempt to refine the current solution to include additional opportunities or to
accommodate minor degradations in the capabilities of the system-to-be-controlled.

The Plan Selection Module evaluates the utility of the revised plan relative to the current plan (and any other
previously generated plans) to determine which plan to execute. A variety of plans may be generated, each
based on one of multiple objectives, and given a strategy for selecting among a set of plans, Plan Selection
makes the choice of a single plan to be executed.  A change in plan may not be warranted if there is no plan in
the set of generated plans whose value sufficiently exceeds the value of the current plan.  The interpretation of
“sufficiently exceeds” is made in the context of strategy inputs from the coordination function. The selected
plan is passed to the Plan Execution and Control Module for execution.

Given the current state of the system, the Plan Execution and Control Module interprets the current (or
selected) plan and issues commands to a subordinate planning level to guide its planning or, for the lowest
level of planning, to the physical system-to-be-controlled.  Execution of these “set-point” commands results in
the pursuit of the current plan. Note that even when there are no detected abnormal deviations, under normal
operations there typically will be minor deviations from the expected state.  Thus, in addition to providing set-
point commands for the pursuit of the current plan, an auxiliary role of the Plan Execution and Control
function is to determine plan “perturbation” control commands that will attempt to correct for the range of
normally expected deviations of the actual system state from the planned state.

The External Coordination Module provides an interface between the system being controlled and other
control or controlled elements, which include human operators or users as well as other systems with which
the system being controlled interacts.  It allows for the receipt of new instructions, which can take the form of
new objectives to be pursued and/or new constraints to be imposed on the objectives being pursued.  It also
provides for reporting out the current plan that is being pursued, the progress that has been made in the
execution of that plan, the current state of the system, diagnostic information related to any problems that may
have been encountered, and/or any new opportunities that have arisen along the way. Thus, External
Coordination is responsible for assembling and transmitting information, deciding: what to transmit, when to
transmit it and to whom to transmit.

The Internal Coordination Module harmonizes the efforts of the Monitoring, Diagnosis, Plan Generation, Plan
Selection and Plan Execution and Control Modules to ensure that

1. Operations proceed smoothly in the absence of any problems or new opportunities,

2. Problems are accurately diagnosed and that the appropriate corrective actions are taken,

3. New opportunities are recognized and appropriately exploited,
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4. New plans, when needed, are generated in a timely manner,

5. The transition from one plan to another is effected in a seamless manner, and

6. The current plan is properly executed.

In effecting that harmony, Internal Coordination develops strategies for controlling the other individual
modules

1. By monitoring the assessed situation including: progress toward the current solution and the state of
both the system-to-be-controlled and the external environment and

2. By taking into consideration any plans developed by other agents and objectives and constraints input
from higher level authorities.  Included in those strategies are:

− The criteria for deciding when replanning is required,

− The time allocated to generating a solution and

− Cost/objective functions and constraints to be employed in generating a solution.

In each of the functional modules, and each level in the hierarchy, intelligent decisions are required to allocate
system resources. Nonetheless, most computational resources will be devoted to the Plan Generation Module.
Each level requires a unique mathematical formulation accounting for the specific objective, available
resources, and relevant constraints.

Software Architecture
The conceptual implementation of the ADEPT architecture has its roots in the AMMT software, shown in
Figure 3.  That software was written in C and implemented in a real-time, priority based UNIX environment.
The system consists of four tasks:

1. Mission Planner

2. Mission Evaluator

3. Guidance Interface

4. Asynchronous Input Handler

In the context of the current ADEPT architecture, the monitoring and diagnosis functions take place in the
Mission Evaluator task, the plan generation function takes place in the Mission Planner task and the plan
execution function is in the Guidance Interface task.  Since this software has evolved into the current ADEPT
architecture, it will be insightful to briefly discuss its implementation.

The Mission Planner task operates at the lowest priority and is responsible for sequencing the activities of a
single level in the hierarchy.  It considers permutations of the current plan to see if a better plan exists.

The Mission Evaluator incorporates the output from the Planner task into the currently executing plan.  It also
controls the input to the planner.  This input includes which level the planner task should be working with and
when it should restart the planning process.  Its most important job is to verify the safety and the feasibility of
the currently executing plan.  If it determined that the environmental conditions have changed so that the
current plan is no longer safe, it invokes an immediate replan or provides reactive measures for the near term.

The Guidance Interface operates at the highest priority and is the planner's only interface with the fault tolerant
processor.  This task converts the “executing” activity into a guidance command that the vehicle's guidance
system understands.  It also monitors subsystem health, controls subsystems and reads environmental sensors.

The Asynchronous Input Handler is responsible for processing terrain and target messages and updating the
map.  Moreover, it responds to requests from the sonar and the host ship.
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Figure 3: AMMT Software Architecture

The AMMT software has been used as the basis for extending the ADEPT concept into a reusable, object-
oriented software framework.  In the current architecture, the monitor and diagnosis tasks are separated to
allow for a more modular implementation and to allow for the ability to execute the two tasks at different rates
if necessary.  Conceptually, a single level of the ADEPT architecture consists of an object that has a member
function for each of modules that comprises one level of the architecture. Factory and bridge patterns [11] are
employed to allow for ease of modification of the functions that are performed in each of the modules. The
factory method provides an interface for creating planning objects for different domains while the bridge class
separates the implementation from the abstraction.  The base planner class itself then just executes the generic
functions monitor(), execute() etc. without regard to the actual implementation being used.  The use of the
bridge pattern allows the actual monitor() function to be activated.  Figure 4 shows the layout of the planner
class with implementation classes for both an unmanned air vehicle (UAV) and an unmanned undersea vehicle
(UUV).
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Figure 4: ADEPT Planner class, including 2 domain implementations

The software has been successfully demonstrated in cooperative operations with air vehicles and ground
vehicles.  This work was supported by Draper internal research and development funding and continues to be
extended under externally funded programs.  The ADEPT architecture has been embedded into the more
encompassing vehicle/ground station architecture developed under internal funding and shown in Figure 5.
The ADEPT code runs within the “Mission Planning and Control” block on both the ground station and the
autonomous vehicles.  While running on the ground station, it is often used to assist an operator in generating
plan input objectives.  To support this, the planning code can operate in conjunction with a simulated
environment on the ground station.  When the ADEPT architecture is controlling a vehicle, the communication
link to the vehicle passes objectives to the ADEPT software running on-board.

Ground StationGround Station

HCI

Mission
planning and

control

C
om

m
unication m

anager

Data
manager

Situation
awareness
manager
(mapping,
navigation,

image and data
fusion, health,
environment)

Sub-
Mission

Activities

Control

Actuators (sim)

Vehicle/RobotVehicle/Robot

Mission
planning

and control

Sub-
Mission

Activities

Control

Actuators

Data
manager

Payload/sensor
manager

Situation awareness
manager

(navigation, image and
data fusion, health,

environment)

C
om

m
unication m

anager

Payload/sensor
manager

Figure 5: Draper’s Autonomous Vehicle Architecture, including ADEPT for mission planning

+ ~Plan (  ) : 
+ Plan (  ) : 
+ Diagnosis ( void ) : 
+ Generation ( void ) : 
+ Execution ( void ) : 
+ Monitor ( void ) : 
+ Plan ( planmpFactory *factory ) : 
- activities [*] : Activity 
- value  : int  = 0
- _imp  : PlanImp*  = NULL

Plan

+ ~PlanImp (  ) : 
+ PlanImp (  ) : 
+ DiagnosisImp ( void ) : 
+ GenerationImp ( void ) : 
+ ExecutionImp ( void ) : 
+ MonitorImp ( void ) : 

PlanImp

11

 _imp

+ ~UAVPlan (  ) : 
+ UAVPlan (  ) : 
+ DiagnosisImp ( void ) : 
+ GenerationImp ( void ) : 
+ ExecutionImp ( void ) : 
+ MonitorImp ( void ) : 

UAVPlan
<< Application >>

+ ~UUVPlan (  ) : 
+ UUVPlan (  ) : 
+ DiagnosisImp ( void ) : 
+ GenerationImp ( void ) : 
+ ExecutionImp ( void ) : 
+ MonitorImp ( void ) : 

UUVPlan
<< Application >>

+ ~Activity (  ) : 
+ Activity (  ) : 
+ Execute ( void ) : Activity[]
+ Estimate ( void ) : float
+ Activity ( activityImpFactory *factory ) : 
- utility  : int 
- _imp  : ActivityImp*  = NULL

Activity
1

1...*

 

activities

+ ~PlanExec (  ) : 
+ PlanExec (  ) : 
- levels [n] : Plan  = {NULL}

PlanExec

1

1...n

 
levelsPlan::Plan(planImpFactory *factory)

{
    _imp = factory->createPlanImp();
}

Plan::Monitor() {_imp->MonitorImp();}

Plan::Execution() {_imp->ExecutionImp();}

Plan::Generation() {_imp->GenerationImp();}

Plan:::Diagnosis() {_imp->DiagnosisImp();}

<< Notation >>
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Applications of ADEPT
The following sections summarize four programs supported by the ADEPT architecture.  The first is an ONR
program for cooperative multi-autonomous vehicle operations; the second is a NASA program for cooperative
constellations of satellites and high altitude UAVs for earth observations.  The final two represent higher-level
control problems.  They include a DARPA program for automating coordinated theater-wide air operations
and a program to develop advanced air traffic flow management.

UCAV Intelligent Autonomy
ADEPT was used to provide the mission planning capability for a series of demonstrations performed for
ONR, highlighting key technologies necessary to perform ship-based ISRT missions [2, 10].  The planned
mission planning capabilities of the system included:

1. dynamic replanning to avoid pop-up threats in a threat-dense environment;

2. planning a two UCAV cooperative geolocation mission, followed by an unmanned ground vehicle
(UGV) plan to the geolocated target; and

3. performing a search for a landing platform (surrogate for a ship in sea-state 3) and, working with
automatic target recognition (ATR) and target tracking algorithms, maintaining lock on the landing
site in order to perform an autonomous shipboard landing.

The first two of these capabilities have been demonstrated.

Supervisory and Autonomous Satellite Operations
ADEPT is being utilized in this NASA program [1] to meet key earth science objectives for rapid response to
and tracking of environmental phenomena, and detailed study of the Earth through optimal allocation of
resources within a sensor web that includes orbiting satellites and UAVs. Three autonomous mission planning
tiers comprise the architecture. The highest, System Level, performs its computations at a centralized control
center, and is responsible for allocating the ground based resources. The middle level allocates data collection
tasks among individual sensor web elements to meet prioritized input objectives, using centralized or
distributed planning. The lowest, Individual Platform Level, allocates the resources for the individual satellite
or UAV.

JFACC (Joint Forces Air Component Command)
The ADEPT hierarchical architecture was employed on this DARPA program to plan and execute missions for
five wings of aircraft over a seven-day campaign [7, 9].  The levels of the architecture are illustrated and the
planning problem solved at each level is illustrated in Figure 6.
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Figure 6: Air Operations Planning and Execution Hierarchy

The Target Partitioning level allocates targets and aircraft resources to Mission Generation Level.  The
Mission Generation level forms strike packages over time, assigning specific aircraft to specific targets,
employing route costs developed by the Strategic Router Level.  The Strategic Router Level optimizes paths
from bases through tankers to target goalpoints and back, minimizes the route cost comprising a combination
of attrition risk and cost of time.  The ADEPT architecture allows a truly closed-loop system that is capable of
replanning in response to system feedback and new target definitions at intervals as short as a few hours.

Air Traffic Flow Management
During the time ADEPT was evolving, Draper IR&D research on Air Traffic Flow Management (ATFM) was
taking place.  The ADEPT architecture was used in the development of advanced ATFM concepts and
algorithms, some of which are described in [5] and further developed in [13].  ATFM is the top level in the
hierarchical decomposition illustrated in Figure 8 and coordinates among planning and control functions at and
near the airport and planning and control functions in the en route airspace.
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Summary

The paper presents some aspects that have become critical in the context of guidance, navigation, and control
of unmanned aerial vehicles.  The envisioned cost-effectiveness of unmanned air vehicles in support of a
variety of military and civilian applications has introduced basic and applied research challenges in areas such
as levels of autonomy and “intelligence” of the platform, interaction with manned control centers, reliability
and safety of operations, and control management of single vehicle, as well as formation flights.  The paper
addresses issues such as dynamic modeling, formation management and control, and guidance aspects.  Their
origin and potential solutions are presented with particular attention to flexible formation keeping.

Issues on UAV Guidance, Navigation, Control, and Formation Flight

As of today, unmanned aerial vehicles (UAV) are being proven as cost-effective platforms for supporting
military operations.  Indeed, as the operational roles of such vehicles expand beyond reconnaissance,
intelligence, and data gathering, to electronic warfare, ground strike, and possibly air combat, many forecast
that in the near future most combat aircraft will be unmanned.  Remotely controlled, semi autonomous and
autonomous vehicles will also play a key role in providing services for the civilian community.  UAV’s can
provide efficient platforms for surveillance, search and rescue, relief in natural disaster areas, and law
enforcement operations.  However, as the operational capabilities of unmanned vehicles develop, there is a
real need for an increase in their level of autonomy, decisional capabilities among different tasks, reliable
control of multi-vehicle operations, and in fight and ground command and control center system integration.
The successful accomplishment of these objective depends on the operational specifics of the onboard
instrumentation, especially position sensors and communications links, but also on the capability of
developing methodologies based on reliable and advanced basic research results.  The present paper outlines
some of these aspects, although not in an exhaustive manner, with particular reference to formation dynamic
modeling, its stability and control, and automated guidance and navigation.

Increased performance in unmanned aerospace vehicles is leading toward mainly tailless new
aerodynamic configurations for stealth capabilities, with perhaps high angles of attack for post stall
aerodynamic regimes maneuverability, including thrust vectoring (agility, performance, and survivability
following battle damage).  In addiction, the use of multi-aircraft formations with remote control of a single or
a few formation leader(s), with real time information exchange between the elements of the formation -
supervised by some form of intelligent control - for higher levels of mission effectiveness is becoming
increasingly appealing.  The present effort is related to the latter aspect that is formation flying of unmanned
air vehicles.

In the past, UAVs have been primarily used as test bed.  They were used for instance to test flight
envelope expansion, and flight control system for the manned aircraft or as a target for weapon systems.  Over
the past ten years, they have been envisioned as operational airborne platforms and have received considerable
attention especially in many military strategic plans.  From an engineering point of view, this was made
possible and affordable in part by the miniaturization trend of flight control system components (sensors,
actuators, CPUs, data acquisition systems, etc.), and by the increasing performance and speed of
communication links.

The advantages of UAV technology appear several and clear.  These vehicles, either flying in formation
or individually, have high maneuverability potential, and in fact the only g-limitations are due to structural
constraints because of the absence of a human pilot.  In addition to eliminating the risk of human losses,
UAVs have additional design advantages: a sophisticated cockpit is not required, no high redundant flight

Paper presented at the RTO AVT Course on “Intelligent Systems for Aeronautics”,
held in Rhode-Saint-Genèse, Belgium, 13-17 May 2002, and published in RTO-EN-022.
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control systems, and lower weight than a similar size manned aircraft.  This could in turn be used, partially or
fully, to increase the payload and/or the range.  Another less apparent advantage is of a logistic nature and it is
due to the fact that the deployment of UAVs can take place in very remote locations, without the need of
deploying military rescue personnel in case a pilot rescue mission become necessary.

Operational potential of UAVs could strongly be improved in some cases by making them flying within a
close formation.  The first advantage comes from aerodynamic effects.  It is well known in fact that aircraft
with large aspect ratio wings have better overall aerodynamic efficiency because of reduction in drag for a
given lift.  However, large aspect ratio implies large wingspan for a given area, this means that the resulting
structure will be unreasonably flexible and fragile for lightweight design.  A similar improvement in overall
efficiency can be achieved by flying multiple aircraft in close formation.  In an idealized case of n identical
aircraft, each with the aspect ratio AR flying in tip-to-tip formation, the effect would be that of a single aircraft
with nxAR aspect ratio.  The aerodynamic benefits are due to favorable wake-vortex encounters.  Wind tunnel
tests and analytical studies have shown that the benefits increase as additional aircraft are added to the
formation.  Moreover, from an operational point of view, many aircraft involved in a mission can be better
managed if they fly in a formation, rather than in an undefined structure.

An important challenge in the study of formation flight is represented by the complexity of the
aerodynamic coupling.  It is clear that the aerodynamic interference between different aircraft in the formation
needs to be fully evaluated, modeled, and quantified since it may have critical effects on overall dynamic
performances.  For this purpose a primary factor is the size of the different aircraft within the formation; this,
in turn, affects the aerodynamic interference induced by each one on the others of the formation, and,
ultimately, dictates the relative distance allowed within the formation itself.  Mathematical modeling of the
aerodynamic interference between different aircraft in a formation was first approached by Bloy and others.
They considered the problem of aerodynamic interference on lateral directional stability during air-to-air
refueling maneuvers.  In Reference [3], Myatt and Blake proposed an aerodynamic database with
experimental data for the follower aircraft in a two-vehicle formation.  In more recent studies, Gingras and co-
workers proposed wind tunnel testing to acquire data for close vehicles simulation, while Nelson and Jumper
used the Horseshoe Vortex theory to discuss the response of an airplane following an encounter with the
trailing vortex wake by another.  Blake, D’Azzo and Multhopp further discussed the problem of aerodynamic
interference in a close formation flight, with a Leader/Wingman structure.  The Leader generates vortices
behind its wing.  Such vortices exert actions on the Wingman lifting surfaces.  In this approach, the Leader’s
wake is modeled via Horseshoe Vortex theory, and the drag reduction, sideslip force and induced angle of
attack are introduced in the Wingman dynamics through additional stability derivatives leading to a
mathematical aircraft model for a formation flight.

The other main challenge of close formation dynamics is the control system design.  Close formation
flight control, intended in its broad aspects of guidance, navigation and control, was originally studied for a
classic leader/wingman configuration.  An aircraft (Leader) is selected to direct the formation, following a
prescribed path, and all the others (Wingmen) are expected to maintain a fixed relative distance with respect
to the lead airplane, in order for the formation to have a desired geometrical shape.  D’Azzo and co-workers
analyzed the kinematical coupling effect of a two-aircraft configuration, and introduced a proportional integral
(PI) controller for formation control.  Wolfe, Chichka, and Speyer introduced the concept of decentralized
control for UAVs in formation flight in reference 11.  The advantages of using decentralized controllers are
clear, especially for a large size UAVs formation, a full state feedback solution for the problem could be quite
unfeasible due to the very high number of states.  In addition, a decentralized control approach would provide
more flexibility for time-varying number of UAVs in the formation.  Later work by Chichka, Speyer,
Chichka, Speyer, and others, in references 11 and 12 respectively, focused on a peak seeking control approach
for close formation flight where the overall formation control was approached as an optimal control problem
with the objective of minimizing the overall drag.  A fairly intensive and inclusive study on formation flight
control - with the use of a PI control scheme- was presented by Proud, Pachter, and D’Azzo for a 2-D
formulation of the problem, and then recently extended to a 3-D formation dynamics problem.  Schumacher
and Kumar recently presented results on the use of adaptive control within the area of formation control.  This
adaptive scheme featured an optimal LQR design for the outer loop and a Dynamic Inversion design for the
inner loop.

The paper is structured as follows: In the next section some classical approaches to formation dynamics
and control are presented.  Then,  a procedure for aerodynamic interference is suggested, in order to improve
the aircraft models.  Given a lifting surface system, the proposed technique permits the calculation of induced
velocities and then the forces due to coupling effects between aerodynamic surfaces.  Simulation results with a
three-aircraft formation have shown that each aircraft experiences an increase in lift and a drag reduction by
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flying in a close formation.  This result does not appear if a single Horse-Shoe Vortex technique were used,
because such method is based on the hypothesis that only the follower is affected by the wake. Thus, the
above results are used to obtain the dynamic model of an aircraft flying within a formation.  A different
approach to formation flight is presented where each aircraft does not refer to the preceding one or to the
formation leader, but keeps its position with respect to an imaginary point in the formation whose dynamics
depend on all the others.  The approach is based on the apparent behavior of some migratory birds, that during
flight ‘wait’ for the those birds which have changed the original geometry of the formation by flying in a
different path.  The formation controller is constituted by two subsystems: a trajectory controller which
provides tracking of a prescribed path, and a position controller which permits formation geometry keeping.
These control laws are mixed by a parameter that depends on the position error.  Finally, a waypoint-based
guidance scheme is suggested as a potentially appropriate navigation loop.

Traditional Formation Control

The formation control problem can be traditionally approached, by designing first an inner loop, that allows
tracking commanded velocity, altitude and heading.  The outer loop consists of a Formation Controller (FC)
that generates a reference path command for the inner loop, in order to follow a desired trajectory and to
maintain the formation geometry.

The basic dynamic model for inner loop controller design, has a standard linearized form given by

x Ax Bu

y Cx Du

= +
 = +

�

with mpn uyx ℜ∈ℜ∈ℜ∈ ,,  as state, output and input vectors respectively.  In particular, we refer to a sample
trim condition corresponding to Mach = 0,4 and altitude of 10,000 ft.  The dynamics described above include
four inputs (symmetrical and differential taileron deflection, rudder deflection and engine throttle, and 14
states inclusive of 6 body rates, Euler angles, center of mass position and engine states.

Inner Loop Synthesis

Assuming dynamic separation between longitudinal and lateral-directional modes, the state and control
vectors can be partitioned as follows

0

0

long long longlong

lat lat lat

long

lat

x A uB
x x

x A uB

y
y Cx Du

y

       
= = +       

              


  = = + 
   

�

�

�

An LQ-Servo system was developed, shown in Figure 1 with the longitudinal inner-loop controller based on
the above and capable of providing adequate tracking of commanded velocity and altitude.

Figure 1.  LQ-Servo Block Diagram
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the full state feedback gain matrix Klong was obtained from the solution of the algebraic Riccati equation
associated to the quadratic cost function in
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The lateral-directional inner loop was synthesized in a fashion similar to the longitudinal one.  The full state
feedback controller is given by

latlatlat xKu −=

and the gain matrix Klat is obtained with a minimization of a performance index such as the one above.
Tracking is achieved as shown in Figure 2 below, and more detailed results can be found in [9].

Figure 2.  Inner Loop Controller Performance

Formation Control

In a typical formation flight, the Wingman follows the trajectory of the Leader, taking the other aircraft as
reference to keep its own position inside the formation.  In a large, rigidly flying formation, intra-aircraft
distances must be kept constant.  Then formation trajectory definition is usually the primary responsibility of
the Leader.  Many important aerodynamic effects influence the specifications of the overall control system,
such as the vortex leaving the trailing edge of the wing for instance.  In order to attain a more realistic
simulation of a formation, a horseshoe vortex model of a wake was introduced.  To simplify the calculation of
the induced velocities, the tail creates no vortices, under the assumption that the main wing lifting effect is
much larger.  The vortex produces an up-wash on the wing of the following aircraft.  The main up-wash effect
is the increase of angle of attack, with respect to the isolated flight condition, thus more lift is generated.  The
vortex-induced velocity decreases with distance; hence the left side of the wing will be more affected than the
right side.  This causes a rolling moment, thus an attitude automatic control is necessary.  Creation of a
yawing moment has been neglected due to its weak contribution.
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The primary objective of the formation controller (FC), also based on LQR techniques, is to maintain the
formation geometry.  To compute the distance to its reference, each aircraft acquires its position P = (X, Y, H)
from a GPS-based position sensing system, and receives, through appropriate communication channels, other
aircraft positions PR = (XR, YR, HR).  The formation controller is also responsible for having each aircraft
follow a prescribed path.  Each FC receives path information in terms of velocity, heading and altitude TR =
(VR, HR, ψR), from another Wingman, the Leader or a ground station.  Then the received data vector becomes
RR = (XR, YR, HR, VR, ψR).  The commanded trajectory for the inner loop controller can be defined then as TC =
TR + ∆T, where ∆T is the output of the formation controller.  The position error inside the formation is ∆P =
PR – P, and it is composed of the error in the formation plane ∆PXY  = [ XR-X, YR-Y ] and error in the vertical
plane ∆PH = [ HR-H ]:  ∆P = [ ∆PXY, ∆PH ].  These coordinates come from two GPS receivers, and are
expressed in an earth fixed reference frame; they must be rotated into the aircraft body-fixed frame: ∆P’ =
[∆P’XY, ∆P’H ] using aircraft Euler angles [φ, θ, ψ ] in order to be used by the formation controller.  In fact,
only ∆PXY must be rotated in order to keep the formation in the X-Y plane, otherwise ∆P’H would depend on
the (φ) or pitch (θ) ; then ∆P’H = ∆PH, and

[∆P’XY, 0] = BRE (φ, θ, ψ  ) ⋅ [ ∆PXY , 0 ]

where BRE is the earth-to-body frame rotation matrix.  The effective formation controller was designed with
linear quadratic control techniques and takes ∆P’ as input.  Figure 3 shows the complete control block
diagram.  The resulting control law is:

∆T = KFC(s)∆

The FC applies the corrections ∆T to the reference trajectory TR to generate trajectory commands TC for the
aircraft autopilots.  These corrections take into account the changes in velocity, heading and altitude, to the
reference trajectory, that are necessary to maintain the formation geometry.  Each aircraft can take more than
one reference from the other elements of the formation.  A convex combination ∆PW of the distance errors
∆Pi, from the i-th aircraft taken as reference, can be used as a unique position error by the formation controller
as:
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Using ∆PW, in place of ∆P, allows the formation to possess a certain degree of “elasticity”; that is, the
formation stretches in the direction of keeping the average position error to a minimum.

To validate the overall control system performance, several computer simulations were performed with a
three-aircraft diagonal formation shown in Figure 4.  The relative nominal distances between each aircraft
were set to be 15 and 10 meters along the x and y-axis respectively while the altitude was the same for all.
With respect to the sequential references chain, two types of simulations were performed with two different
strategies:
Leader Mode: Both Wingman1 and Wingman2 take the trajectory references from the Leader of the
formation.
Front Mode: Each aircraft takes its reference from the preceding one.  In this case, Wingman1 is referred to
Leader and Wingman2 is referred to Wingman1.
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Figure 3.  Complete control scheme.
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Figure 4.  Three aircraft diagonal formation geometry.

Figures 5 and 6 show the responses of the Wingman2 to airspeed and altitude commands in Leader Mode and
Front Mode.  In the Front Mode structure, Wingman2 presents a poorer transient response, due to error
propagation.  Although no optimized synthesis was performed in the computation of the control gains, and
each vehicle posts the same set of gains, on the basis of the preceding simulation results a formation controller
based on Leader Mode suggests better transient responses because of the absence of error propagation along
the references chain.  On the other hand, this type of formation structure may be more critical, because in this
case, Wingman2, which is directly connected to the Leader, has no information about its distance to
Wingman1 therefore it would be not capable of avoiding a collision with Wingman1.  Optimizing the
autopilot, which is not the focus of the present work, can reduce error propagation.

Improved Strategy for Formation Control

In this section we present a more accurate dynamic modeling, and a modified formation controller
structure.  A traditional single Horseshoe Vortex technique consists in replacing the whole lifting surface by
single vortex made with two free segments and one wing-fixed segment.  Such model is simple and introduces
minor modifications to the dynamics equations. However, by modeling a Leader/Wingman close formation by
the single Horseshoe Vortex theory, only one aircraft is affected by the wake efforts, and the effect of the
wake along the x-axis is not modeled to obtain a close analytical solution.  This may cause the results not to be
very accurate or complete.
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Figure 5.  Wingman2 response to speed command.
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Figure 6.  Wingman2 response to an altitude command.

In fact, in a formation flight problem, the mathematical modeling for all the aircraft involved in the formation
is a critical issue.  On the other hand, experimental data from wind tunnel tests could describe completely the
aerodynamics interference effects but may become too costly in case of an increasing number of vehicles.
Here, a different 3-D approach, based on a wing-distributed Horseshoe vortex system is presented.  Given a
system of lifting surfaces, this technique features the calculation of induced velocities as well as the forces and
moments due to the coupling effects between all the aerodynamics surfaces.  The first step consists in defining
the lifting surfaces, only single tapered wings are considered here.  To define each lifting surface, the
following vector containing geometrical and aerodynamic parameters of the root profile is introduced:

Once a number s of lifting surfaces has been defined, each surface is modeled through a straight line, also
known as lifting line, passing through the aerodynamic center of the local profile.  The aerodynamic center of
the single profile is approximately set at 26% of the geometric chord.  Let us now consider the r- th lifting
surface.  First the two halves of its lifting line are divided in nr/2 segments, then a vortex system, composed
by a number nr of horseshoe vortices, is distributed on each lifting line.  Each horseshoe vortex is modeled
with a wing-fixed portion and two free portions that extend to infinity.  Thus the two following subsets of
points are introduced:
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The first subset Pr contains the points where the free portions of each horse-shoe vortex leaves the lifting

line.  The second subset mr contains the points where the induced velocity is evaluated.  They are the middle

points of the wing-fixed portions of each horse-shoe vortex.  Figure 7 shows, as an example, the generic r- th
lifting surface with the vortex system along with the points Pkr and mkr .

Figure 7.  Lifting surface and vortex system

Once the lifting surfaces have been defined, in terms of lifting line and vortex systems, the induced
velocity and then the strength of the vortices may be evaluated. The aerodynamic interference is calculated by
locally using the fluid dynamic analogue of the Biot-Savart law from electromagnetism.  Such law is applied
both to the wing-fixed portion and to the free portions of each vortex yielding the computation of the vortex
system strength.  At this point, aerodynamic forces, moments, and coefficients can be calculated, which for a
conventional air vehicle can be expressed as:

for a na aircraft formation.  Aerodynamic calculations were performed for a close formation, consisting of

three unmanned aircraft systems.  The relative nominal distances between aircraft were chosen to be 4 and 5
m along the x and y  respectively, with the altitude held constant.  The geometries of the close formation are
shown in Figure 8.  Aerodynamic and geometry data used for this calculations are listed in Table 1, while the
evaluated force and moments coefficients, for the formation configurations based on the previous data are
provided in Table 2, compared to the values for ‘isolated’ flight.  From the results it can be seen that the rear
aircraft gain an increase in lift and an induced drag reduction by flying in formation.  It is also important to
notice that the front aircraft has an increase in lift coefficient and a drag reduction compared to solo flying.
This last result is not found by using simple horseshoe wake models.

Figure 8.  Formation geometry for Wake contribution evaluation
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Formation Dynamics

In this section, the mathematical model of an aircraft flying within a formation is outlined.  The main
difference with respect the model of an ‘isolated’ aircraft consists in the value of the aerodynamic coefficients.
The modeling procedures outlined before are introduced.  Once the mathematical model is developed, the
kinematic equations describing the relative distances between the aircraft are presented.  These equations are
the basis of formation control system design.  The aerodynamic force and moment coefficients can then be
directly introduced in the flight dynamic equations.  However, is useful to split the aerodynamic coefficients
according two different contributions:

The first term on the right hand side of the previous equation is the coefficient in case of ‘isolated’ flight,
while the second is related to the contributions associated with formation flying.  This can be useful within the
design of the control laws, since the wake effects can be treated as disturbances to be rejected by the control
system.
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The basic model used here is a 3DOF dynamic system shown below, with standard notation:

The state variables describing the aircraft dynamics are the airspeed V , the flight path angle γ and the heading
angle χ, while T, n and φ, are thrust, load factor and bank angle and they are the input variables; D is the
aerodynamic drag and m the aircraft mass.  According to the aerodynamic coefficients separation, the system
can be rewritten introducing changes in lift, induced drag and side force.  This leads to:

or, in compact form

To maintain the formation geometry, each aircraft must keep its prescribed distance from a reference.
Such reference may be the Leader of the formation or a neighborhood aircraft or an imaginary point within the
formation.  To calculate the relative distance of the i-th aircraft from its reference r, three reference frames are
introduced: an inertial, Earth-Fixed frame FO and two kinematic frames Fki and Fkr, with the origin on

aircraft i ¡ th and on reference r respectively.  The relationship between position derivatives in the variuos
reference frames is given by

with

The previous method for relative distances calculation is typically used when, during the mission, aircraft
within the formation exchange each others trajectory information, particularly airspeed, flight path angle, and
heading angle. If the trajectory information are not available, and the if aircraft could know only the absolute
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position (e.g. by GPS), the relative distances between aircraft could be computed first referred to the inertial
frame and then rotated to the kinematic frame of each aircraft.

Formation Strategy

The Leader/Wingman structure may not be the best strategy to perform complicated maneuvers,
especially in multi-aircraft formation flight.  In fact, each aircraft in the formation must cooperate in order to
maximize the possibilities for a formation to obtain and retain its structure.  The aircraft in the formation must
work together to achieve a common goal; then, to overcome the limitations of Leader/Wingman structure, a
different strategy is proposed, based on the behavior of migrational birds.  The aircraft in a formation are not
longer referring to each other, but they are required to keep a specified distance from an imaginary point
called Formation Geometry Center (FGC).  The FGC position depends on the relative distances between the
aircraft in the formation itself; this allows each aircraft to have the capability of sensing other vehicles
movement from the nominal position in the formation.  In the presence of disturbances, for instance, if one of
the aircraft loses its position, the other senses the change, and depart momentarily from the prescribed
trajectory, manoeuvreing all-together in order to reconstitute the formation geometry.  Once the geometry has
been reached again, all aircraft continue to follow the prescribed trajectory. This approach is typical of several
species of migrational birds.

For long distance migrational flight, birds of several species tend to move in a formation, flying close to
each other maintaining a defined geometrical shape.  One of the most interesting considerations is the fact that
during a migrational flight if one or more elements of the group loses its position in the formation, the others
leave the migration trajectory and ‘wait’ for the lost ones until the formation shape is reconstituted.  There are
two main reasons why birds fly in a formation; the first reason is related to aerodynamic considerations while
the other is due to the ‘social behavior’ of some species of birds.  In terms of aerodynamics effects, birds take
advantage of the induced velocity produced by the wing tip vortex phenomenon: the inner wing of each bird
in a V formation, for example, gains an increase in lift and then a reduction in induced drag from the upward
rising side of the vortex left by the outer wing of the bird ahead.  For this reason, it is important that each bird
in the group keeps its position; losing position by one or more birds in a migrational flight means to lose a
non-negligible portion of aerodynamics efficiency.  On the other hand, birds like geese and swans form
‘family’ groups: offspring remain with parents one or two seasons after the birth and fly together with them
during the migration.  The elements in these formations know each other and try to remain together
independently from aerodynamics advantages while other birds like storks live in non-familiar group, but fly
together with others just in order to improve the efficiency of the migration (especially during food searching
or meeting season). From these motivations it’s possible to assume that the preceding consideration to be
reasonable.  A two-aircraft formation is considered in the present work.  Each aircraft in the formation will be
represented using the modified three-degrees of freedom point-mass model described in the previous section.

In this approach, aircraft do not refer to each other and, in order to maintain formation geometry an
imaginary point called Formation Geometry Center (FGC) is introduced and each aircraft must keep a
prescribed distance from this point.  The FGC dynamics for an N-aircraft formation can be represented by the
following differential equations:

By integrating the preceding equations, the position of the FGC in the Earth-fixed frame (PFGC) is found and

the distance between the FGC and the i-th aircraft, referred to the frame FO, is defined as:
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Prior to the design of any formation controller, each aircraft of the formation must feature adequate
tracking of a commanded trajectory through an inner loop controller.  The innerloop controller is based on the
model for an individual aircraft in undisturbed air described in the previous section.  The following three lag
filters are introduced to model the fact that the aircraft cannot change bank angle (φ), load factor (n) or thrust
(T) instantaneously.

To implement the inner-loop controller, a dynamic inversion law is used.  The desired trajectory vector is
written in terms of a commanded airspeed (Vc), flight path angle (γ), and heading angle (χ).  It is assumed that
the desired trajectory will be governed by the following linear time-invariant equations:

The bandwidth dictates how quickly the actual aircraft trajectory changes with respect to the new desired
value.  To derivate the dynamic inversion control law, the commanded rates are set equal to the associated
actual, and then solving for thrust, bank angle, and load factor.  The computed thrust, bank angle, and load
factor become the commanded values needed and are given by:

from which
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Once the autopilot structure is defined as above, the model for a N-aircraft formation is obtained by
introducing the force coefficients variations and the relative distances dynamics:

A Formation Controller (FC) is needed to reproduce the natural behavior of migrational birds.  For the
purpose of FC design, linearization around a selected flight condition of the above nonlinear model yields the
linearized set of equation described by the following standard state space model:

Each aircraft has its FC constituted by two control systems: trajectory controller (KT ) and position
controller (KP ).  The main objective of the trajectory controller is to provide tracking of a prescribed path in
terms of desired velocity, flight path and hading angle, while the position controller is designed to maintain
inter-aircraft distances in order to give the formation a desired geometric shape.  Trajectory and position
controllers receive path error information, that is the difference between current and desired path, and FGC-
distance error, that is the difference between current and desired distance from FGC, respectively:

and they generate trajectory and position commanded vectors defined as:

An LQ-Servo controller was developed, and gain matrices KT and KP were obtained through the

minimization of the quadratic cost indexes:

where Qe regards the minimization of the desired output vector, while Qr is related to the residual state

vector.  The resulting commanded vector uc is a convex combination of the two previous control
laws:
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where f ∈ [0; 1], is a function of the position error eP .  The prescribed path can be commanded by one of the

aircraft of the formation or by a ground station o by a Virtual Leader.  In the presence of disturbances, there
may be one or more aircraft with a position error with respect to the nominal configuration.  In this case, the
command vector uc depends both on position error eP and trajectory error eT and so the aircraft in the

formation may not be able to follow the prescribed path exactly until the geometry is re-established.  When
the formation has the desired shape, the position error eP is zero for each aircraft and f=1.  This causes the

commanded vector be given only by the contribution of the trajectory controller and all the aircraft will follow
the desired trajectory rT .

Simulation Results

To validate the overall control strategy, simulations were performed for close formations consisting of two
aircraft.  The aircraft model includes aircraft/autopilot, the distributed HorseShoe Vortex code and FGC
relative distance dynamics.

 

Figura 9.  Two-aircraft configuration for simulation

The whole Formation Control scheme for such formation is shown in Figure 10 and is simulated in a
MATLAB environment.  The relative nominal distances between aircraft and FGC are selected to be 5 m
along the x and y axes.  The altitude is the same for both aircraft at 300m.

Figure 10.  Complete formation controller for a Two-aircraft configuration

Additional aircraft data required for this effort are listed in Table 3 and the evaluated aerodynamic
coefficient variations for this formation structure are listed in Table 4.
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The first simulation a path following task. Each aircraft receive the commanded trajectory from the VL.
Starting from a steady-level flight condition at 20 m/sec, each aircraft is commanded to perform a heading
change of -30 deg.  Trajectory tracking is achieved and the relative distances between the aircraft are
maintained at nominal values.  Figure 11 shows aircraft response to the heading command, while Figure 12
shows the relative distance between aircraft and the FGC during the same manuever.

Figure 11.  Aircraft responses to a 30 deg. Heading change

Figure 12.  Relative distance of the two aircraft from FGC.
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The second simulation is related to a formation geometry variation.  Each aircraft is commanded to increase
its relative distances from FGC from 5 to 7 m along x and y-axis.  Figure 13 shows the relative distance
between aircraft and the FGC while Figure 14 shows the airspeed time history during such maneuver.

Figure 13.  Relative distance of the two aircraft from FGC.

Figure 14.  Airspeed time histories during formation geometry change.

The last simulation shows how the FC could reproduce the behavior of migrational birds.  The initial
condition is a steady-level flight.  Each aircraft has an initial airspeed of 20 ft/sec that is the commanded
trajectory.  A speed perturbation is introduced on aircraft 2, which slows down with respect to aircraft 1.
Figure 15 shows speed profiles for the two aircraft.  It is clear how aircraft 1 stops following the prescribed
velocity and ‘waits’ for aircraft 2 in order to maintain the nominal distances.
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Figure 15.  Airspeed time histories during perturbed flight.

Expert Guidance and Navigation Issues

In this section, a brief description of a waypoint apporach to guidance of unmanned air vehicles is
presented.  The work is relative to a single UAV, however current research is under way in order to extend the
methodology to multiple cooperative aircraft.

A typical operation for an UAV in surveillance and search & rescue tasks can be with with a set of
sequential waypoints to be passed by the aircraft.  Since traditional proportional guidance techniques do not
allow specifying desired waypoint’s crossing direction, a fuzzy guidance scheme was developed.  This allows
a better trajectory description by specifying the single waypoint position in space, crossing heading and
velocity.  The procedure is based on a fuzzy controller that commands the aircraft, via its autopilot, to
approach a list of waypoints.  Implementation of a fuzzy guidance controller may be very expensive in terms
of computational power/time, to solve this problem, a fuzzy controller was designed using a new approach
based on Takagi-Sugeno fuzzy systems.  This technique solves also previous 3 FGC version problems relative
to non-smooth autopilot input generation.

The aircraft guidance problem is addressed, based on by an inner nonlinear control loop described
previously in the paper, which allows tracking of commanded velocity , flight path, and heading angles.
Then, an outer loop, that is the actual fuzzy guidance system (FGS), generates a reference path command in
term of desired velocity, flight path and heading for the inner loop, in order to reach the desired waypoint.
The Guidance System presented here is the evolution of the one presented by the authors in previous work.
The main disadvantages of the old guidance system were the use of Mamdami Fuzzy networks that are too
complex for real-time implementation, the use of triangular membership functions that resulted in too
“square” trajectories and furthermore the fuzzy laws gave a good performance around the design aircraft
speed only.  One thing that remains unaltered from previous work is the use waypoint-relative coordinates to
design guidance laws independently of waypoint orientation.  To overcome the disadvantages of old approach,
this new work proposes the use of Takagi-Sugeno Fuzzy networks with gaussian membership functions that
helped generating smooth trajectories and resulted in less fuzzy sets and laws.  Furthermore a non-linear
scaling factor has been introduced to guarantee laws validity over a large speed range.

Two components constitute the guidance system: the Waypoint Generator (WG) and the Fuzzy Guidance
System itself(FGS).  The desired trajectory is specified in terms of a list of waypoints without any requirement
on the path between two successive waypoints.  A waypoint is given in cartesian-space coordinates (Xw;
Yw;Hw), and a desired crossing speed (Vw) and heading angle (χw) are used to obtain a preferred approaching
direction and velocity, thus the waypoint belongs a five-dimensional space W = [Xw; Yw;Hw; Vw; χw].  The
WG holds a listof waypoints (WL) in 5-D, checks aircraft position, and updates the desired waypoint when the
previous one has been reached within a given tolerance.  When all waypoints have been reached, it holds the
last one so that the aircraft loops around it.  The waypoint generator’s only task is to present the actual
waypoint to the FGS.  No dead-reckoning or navigational errors are modeled so the WG and the FGS know
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the exact aircraft positions, velocity and heading.  Between theWG and the FGS, a coordinate rotation system
transforms earth-fixed-frame position errors into waypoint-frame relative errors.  Each waypoint defines a
coordinate frame centered in the waypoint position (Xw; Yw;Hw) and rotated by χw around the H-axis.  This
coordinate transformation allows the synthesis of a fuzzy rule-set valid in the waypoint-fixed coordinated
frame that is invariant with respect to the desired approach direction .  When a waypoint is reached, the next
one is selected, the actual reference value W is changed and the rotation matrix is updated to transform
position and orientation errors into the new waypoint coordinate frame.

As described above, the aircraft autopilots are designed to track desired airspeed, heading and flight path
angles.  Using the completed decoupled implementation of guidance laws, three independent Takagi-Sugeno
Fuzzy Controller were designed to constitute the FGS.

One FC generates the desired flight path angle for the autopilot using altitude error

The second fuzzy controller computes desired aircraft velocity:

The third, and most complex FC is demanded to generate the desired heading angle using the position errors
along the X and Y axes of the actual waypoint-frame and heading error. A fuzzy rule-set designed at a fixed
airspeed value can produce a lack of tracking performance when the desired waypoint crossing-speed Vw
differs significantly from the design value.  The solution to this problem is achieved by introducing a speed-
depending scale coefficient for position errors leading to.

with

where V* is the fuzzy design point airspeed.  A schematic block diagram of the control structure is swhown in
figure 16.

Figure 16.  Implementation of Fuzzy guidance to a single UAV.

The fuzzy rules have been defined according to the desired approaching behavior and angular rates
limitations of the aircraft.  Fuzzy knowledge base was designed to generate flyable trajectories using the
maximum linear and angular velocities and accelerations that are typical of a small propeller-engine aircraft.
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The FGS provides with different desired flight path and heading angle commands for different values of
distance from the waypoint.  Based on the complete uncoupled aircraft model, it is possible to describe each
fuzzy controller separately from the others.  The Altitude and the Velocity FC systems are less complex than
the Heading controller, and they are both implemented using Takagi-Sugeno model.  For the first one the only
input is the altitude error and four fuzzy set are designed to map this input and four for the desired output.
The Velocity FC has similar complexity: 3 input fuzzy sets for the velocity error and 3 for the resulting
desired output.  As stated before, guidance in the horizontal (X-Y ) plane is more complex than guidance in the
vertical (X -H) plane.  The horizontal plane fuzzy controller takes its inputs from scaled position errors and
heading error.  The scaled position error in the x-direction is coded into five gaussian fuzzy sets, while three
sets are also defined for the scaled error in the y-direction.  Considering the Takagi-Sugeno output function
for this fuzzy controller:

S is the number of zone dividing the flight space and K is the number of subsets (dependent on the x-direction
error) defined for each zone.  The above equation can be simplified, yielding

Fixing  the scaled errors in the middle of Pth zone, under the assumption that the contribution from the other
zones is near to zero:

The above equation shows that the definition of fuzzy sets for the x-direction error error should be computed
looking at each single set partitioning the flight space, and then looking at cumulative result.  Under this
assumption seven fuzzy sets have been defined.
Figures 17 and 18 show the effect of parameter S previously defined; the trajectories maintain a smooth shape
but the turn radius changes: in particular the turn radius increases at higher speed and decreases at speed lower
than V*.

Figure 17.  Contour plots for membership functions
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Figure 18.  Contour plots for membership functions

Simulation Results

The following simulation shows the results of a non planar trajectory.  First the aircraft is driven to waypoint
W1, then to align with W2, then to W3 that is 150 meters lower in altitude and very near on the (X,Y ) plane
and finally to W4 that is at altitude 100 with a desired approach angle rotated by 90 degrees with respect to the
previous waypoint.  Figure 19 shows this trajectory.  The required descent from W2 to W3 is too steep for the
aircraft capabilities, as decided in the design phase of fuzzy rule-set. A s a matter of fact, when the aircraft
reaches the X,Y coordinates of W3 its altitude is still too high, and it starts a turn to come back to the waypoint
at the prescribed altitude.  In fact, the aircraft begins a spiral or a 8-shaped descent, centered on the waypoint
vertical axis, decreasing altitude with the descent rate limitation given by FGS, until the waypoint altitude is
reached and then it proceeds to next waypoint.  In this particular case, half turn is enough to reach W3
altitude, thus, when it reaches the desired altitude, it holds it and crosses successfully waypoint W3 and,
successively, waypoint W4.

Figure 19.  A 4-waypoint generated trajectory
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Conclusions

The paper presents some issues on guidance, navigation and control problems related to unmanned aircraft.
Methodolodgies based of maintaining desired formations shapes, and autonomous guidance were outlined.
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Introduction
Earth monitoring systems of the future may include large numbers of inexpensive small satellites, tasked in a
coordinated fashion to observe both long term and transient targets.  For best performance, a tool which helps
operators optimally assign targets to satellites will be required.  We present the design of algorithms developed
for real-time optimized autonomous planning of large numbers of small single-sensor Earth observation
satellites.  The algorithms will reduce requirements on the human operators of such a system of satellites,
ensure good utilization of system resources, and provide the capability to dynamically respond to temporal
terrestrial phenomena. Our initial real-time system model consists of approximately 100 satellites and large
number of points of interest on Earth (e.g., hurricanes, volcanoes, and forest fires) with the objective to
maximize the total science value of observations over time. Several options for calculating the science value of
observations include the following: 1) total observation time, 2) number of observations, and the 3) quality (a
function of e.g., sensor type, range, slant angle) of the observations. An integrated approach using integer
programming, optimization and astrodynamics is used to calculate optimized observation and sensor tasking
plans.

Problem Motivation
“...Thus far, we are only experimenting with long term weather, climate, and natural hazard prediction. The
quest for a true predictive capability for Earth system changes requires a flexible and progressive space system
architecture that is responsive to our needs based on our current understanding of the system as well as
accommodating emerging needs in the coming decades. We need to design and establish a smart, autonomous
and flexible constellation [of] Earth observing satellites which can be reconfigured based on the contemporary
scientific problems at hand.  Such a constellation would exploit a combination of active and passive sensing
sensors in ways that we can perhaps imagine today.....”

This is a quote from the remarks of former NASA Administrator Daniel S. Goldin “The Frontier of
Possibilities” presented at the International Astronautical Federation on October 3, 2000.  It clearly describes
the underlying rationale for the multi-year project in which we are developing algorithms for resource
allocation via autonomous reconfiguration of satellite webs consisting of heterogeneous Earth observation
sensor platforms.

The development of these algorithms and a simulation testbed in which they reside, the Earth Phenomena
Observing System (EPOS), will reduce requirements on the human operators of satellites, improve system
resource utilization, and provide the capability to dynamically respond to temporal terrestrial phenomena.
Examples of triggering events are localized transient phenomena that have a significant impact on human life
such as volcanic eruptions, weather (hurricanes, tornadoes, etc.), algae plumes, large ocean vortices, ice shelf
break-up, seismic activities, oil spills, magnetic anomalies, and search and rescue.

Paper presented at the RTO AVT Course on “Intelligent Systems for Aeronautics”,
held in Rhode-Saint-Genèse, Belgium, 13-17 May 2002, and published in RTO-EN-022.
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Vision
In the year 2020, automated mission management will be required to help NASA achieve their Sensorweb
vision.  Draper’s vision is to provide functionality for that mission manager, EPOS 2020.  Key technology
required for the full EPOS 2020 is being developed under our current 2 to 3 year effort.

In 2020, many Earth observing systems will be in place, each with its own ground facilities, communication
and data protocols, satellite characteristics and observation schedules.  There will be hundreds of Earth
observing satellites and relatively few will be identical.  In most systems, satellite maneuvering will be
reserved for station-keeping only. From EPOS perspective these are "coasting satellites" – EPOS observation
schedules must utilize the satellite's existing orbit. Some of the systems have satellites that can be dynamically
tasked through in-plane maneuvering. For EPOS purposes these are referred to as "maneuvering satellites."
These satellites will be easily upgraded and refueled using technology currently being developed [5].  We
hypothesize there will be a coordinating ground station that has: 1) communication with these Earth observing
systems, 2) a given set of data/information interchange protocols that provides the mechanism to exchange
data with these varied systems, 3) visibility into whatever parameters are needed to model these systems, and
4) the capability to influence the observation schedules of these systems.  This is illustrated in Figure 1.  When
a target becomes known, the coordinating ground station calculates which of the satellites controlled by the
Earth observing systems can provide suitable information at the appropriate times and uses that knowledge to
send appropriate viewing requirements to the individual system’s ground stations. The individual ground
stations look more closely at the availability and appropriateness of the satellites within its control, especially
dealing with the priority of all requests for satellite assets. An inability to satisfy the viewing requirements is
communicated back to the coordinating ground station.
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Figure 1: Year 2020 Operation Concept

This concept of operations includes planning and control of constellations and collaborative groups.
Constellations are defined as a system employing two or more spacecraft whose orbits, operations, and
observations are coordinated to provide global coverage or to improve temporal resolution from an altitude
below GEO [4]. Constellations operate within constraints (e.g., keeping relative position in an orbital plane)
that a planning and control system must recognize.  Collaborative groups are temporary sets of
satellites/virtual platforms that have commonality in their objectives; satellites can simultaneously belong to
two collaborative groups.  These groups “exist” (i.e., are formed) in the coordinating ground facility for the
time period during which they are executing a plan. In our concept of operations, a satellite within a
constellation can also be a member of a collaborative group as long as the constellation constraints are not
violated.
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Approach
The implementation of EPOS combines Draper’s autonomous system’s planning framework [3], which is used
to decompose the problem into tractable subproblems or levels.  Each level is then solved with a combination
of combinatorial optimization combined with astrodynamic modeling.

Planning Framework
The basic building block of Draper’s planning and control architecture for autonomous systems [3] is shown in
Figure 2.  It is an extension of the sense-think-act paradigm of intelligence, and is similar to the military’s
Observe-Orient-Decide-Act loop [2].  The key elements are modules for situation assessment, plan generation,
plan implementation, and coordination

Internal & External
State  Signals

• Supervision from Higher Levels
- objectives
- constraints

• Information from Cooperative Agents
- plans
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Figure 2: Planning and Control Architecture Modules

The planning problem addressed in our effort is complex enough to warrant hierarchically decomposing it in
order to make it tractable.  Replanning takes place at the lowest level possible, without disturbing other plans
unless additional resources are needed.  Hierarchical decomposition is appropriate for applications in which
there is significant stochasticity.  In such systems, it is not practical to make detailed plans too far into the
future, since the state of the world (e.g., new targets of interest) and the state of the system (e.g., a satellite
sensor fault) can change.

In order to make the optimization problem tractable, hierarchical decomposition is used both temporally and
functionally.  The decomposition is characterized by higher levels that create plans with the greatest temporal
scope (longest planning horizon) but with the least detail.  At lower levels, the planning horizon becomes
shorter (nearer term), but the level of detail of planned activities increases.  The less detailed plans at the
higher levels coordinate or guide the generation of solutions generated at the lower levels.  Indeed, planning
actions over extended periods of time at a high level of detail is typically both futile and impractical.  Futile
because detailed actions planned on the basis of a specific prediction of the future may become obsolete well
before they are to be executed due to an inability to accurately predict the future.  Impractical because the
computational resources required to develop detailed plans over extended periods of time may be prohibitive
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either in cost or availability or both.  The relationship between the levels of the hierarchy and the planning
horizon and level of plan detail is shown in Figure 3.
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Intermediate
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Detail
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Figure 3: Temporal Decomposition

One way of grouping the types of decisions that need to be made for EPOS is shown in Figure 4.  Three
decision tiers are present: 1) System, the top tier focuses on decisions that impact the entire EPOS (e.g., which
targets to collect data for); 2) Collaborative Group, the middle tier addresses issues that relate to a group of
multiple satellites being used to collect data on a target (e.g., which satellites make up this group); and 3)
Satellites, the lowest tier addresses decisions relevant to the individual satellites making up each collaborative
group (e.g., what burns should be executed to achieve a certain level of required coverage).  This
decomposition is natural for satellite operations.

SatellitesSatellitesSatellitesSatellites

System

Collaborative 
Group

Collaborative 
Group

SatellitesSatellitesSatellitesSatellites

Figure 4: Three Tiered EPOS Hierarchy

Another decomposition, one based around seven key levels of decision-making is describe in Table 3-6.  The
longer term, EPOS-wide issues are determined at the upper levels, while shorter-term decisions are lower
down in the list.  This is a decision-centric approach to decomposition compared with the entity-centric
approach of the three tiers.  The planning and control architecture modules of Figure 2 can be applied within
each of these decision levels.  Note that the description of the decision levels shown in Figure 5 presents the
capabilities of a complete EPOS system, including functionality that has not yet been implemented.
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Mission Manager
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Figure 5: Decision Levels

The development of EPOS is an evolving process.  Previous versions of EPOS [1] focused on an initial version
of the observation level (which included a person-in-the-loop) and an autonomous implementation of the
maneuver level.  The current version of EPOS, 2.0, is focused on an autonomous implementation of the
observation level as well as the sensor planning levels.  The optimization algorithms employed by each of
those levels rely on data that must be derived through astrodynamic modeling.  That modeling is described in
the next subsection.

Astrodynamics
Observation planning algorithms require knowledge of the evolution of target illumination and of sensor-to-
target relative position.  Dynamic models are used to answer the following essential questions for each time t
in the planning interval:

• Which targets are in sunlight?

• Which satellites can potentially view a given target, in the sense that the line of sight from satellite to
target is not obstructed?

• How must the sensor on such a satellite be oriented to have the target at the center of its field of view?

• Paying attention to pointing angle limits, can the sensor be oriented so that the target is somewhere in its
field of view?

Write r(t) for the earth-centered inertial (ECI) coordinates of an earthbound target at time t, and v(t) for a unit
vector normal to the earth's surface (local vertical) at r(t). Both r(t) and v(t) are determined from target
geodetic latitude, longitude, and time, using an analytic representation for the right ascension of Greenwich.

To determine if the target is in sunlight at time t, we need ECI coordinates u(t) for the direction to the sun. An
analytic representation is used.  The target is in sunlight when the dot product v(t ) ⋅u(t)  is positive.
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Satellite orbital motion is modeled using the simple 2J  secular theory, but the software could be easily
modified to use a more sophisticated orbit propagator.  ECI position coordinates, s(t), for a satellite are
computed from its orbit elements using standard two-body mechanics formulas.

The look direction, from satellite with coordinates s(t) to target with coordinates r(t), is computed as follows:

( )
)()(

)()(

tstr

tstr
tLrs −

−
=

The satellite can potentially view the target, in the sense that the line of sight is not obstructed by the earth, if
the following dot product condition holds:

0)()( <⋅ tLtv rs

Satellite attitude must be modeled in order to answer questions about sensor orientation.  Let )(tAs denote the
nominal attitude of the satellite with coordinates s(t) at time t.  The development version of our system
assumes sun-nadir steering for each satellite; one spacecraft axis points to nadir and a second axis is normal to
the plane spanned by nadir and the sun direction.  An operational planning tool would support considerably
more flexible specification of satellite attitude profiles.

Attitude )(tAs  is understood to be a coordinate transformation from ECI frame to nominal spacecraft body
frame.  Sensor orientation is specified as a second coordinate transformation, )(

~
tAs , from nominal spacecraft

body frame to a frame fixed in the sensor.  The composite transformation, )()(
~

tAtA ss , could be realized in
either of two ways:

• Steer the spacecraft so that )(tAs  is the transformation from ECI to actual spacecraft body frame.  Gimbal
the sensor so that )(

~
tAs  is the transformation from spacecraft body frame to sensor frame.

• Steer the spacecraft only, so that )()(
~

tAtA ss  is the transformation from ECI to the sensor frame.

In either case, we regard )(tAs  as given and )(
~

tAs  as something to be chosen.

Let �  be a unit vector in the sensor look direction, expressed in the sensor frame. The target is at the center of
the sensor field of view if the following condition holds:

�=)()()(
~

tLtAtA rsss

This condition determines )(
~

tAs  up to rotation about � .  It determines the first two angles )(tx  and )(ty  in a
suitable Euler angle sequence, in other words.

The target remains somewhere in the sensor field of view provided that these Euler angles are chosen from
intervals [ ]xtxxtx ∆+∆− )(,)(  and [ ]ytyyty ∆+∆− )(,)( , respectively.  Here x∆  and y∆  are constants of
the sensor (field of view half-widths).

Four additional parameters of the sensor, minx , maxx , miny  and maxy  are used to specify feasible intervals for
the two Euler angles.  For the sensor to be able to view the target at time t, it is necessary that the line of sight
be unobstructed (dot product condition given earlier) and that the intervals xI  and yI  be nonempty, where

[ ] [ ]maxmin ,)(,)( xxxtxxtxI x ∩∆+∆−=

[ ] [ ]maxmin ,)(,)( yyytyytyI y ∩∆+∆−=
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Observation Planning
The observation planning level’s problem is to find the primary target for each sensor so that the total science
value at time t (including extra for simultaneous viewing) is maximized provided that:

• no more than one of each type of sensor is tasked for each target1,

• no more than two (different) sensors are assigned per target

• demand for data storage on a satellite does not exceed available capacity.

The problem is specified through static data that describes the available satellites and their associated ground
stations and dynamic data that specifies that targets of interest, which targets can be viewed by a particular
satellite and which ground stations can communicate with a satellite at a given time.  In the discussion that
follows, the terms satellite and sensor are often used interchangeably.  The schedule is being done for each
sensor.  Conceptually, one can think of a satellite containing a single sensor.  It is of no consequence to the
formulation that follows if multiple sensors are contained on a single satellite.  To being the derivation of the
problem, the following sets must be defined:

SAR  typeof sensors ofSet 

IR  typeof sensors ofSet 

EO  typeof sensors ofSet 

stations ground ofnumber 

 targetsofnumber 

/sensorssatellites ofnumber 

=
=
=
=
=
=

SAR

IR

EO

S

S

S

L

M

N

Dynamic Inputs

The dynamic inputs to the observation level optimization specify data that is changed from one pass to the
next.  The set of targets that a particular sensor can view at time t are specified as:





=
otherwise 0

 target observecan  sensor satellite/ if 1 ji
ot

ij

The set of ground stations that a satellite can communicate with at time t are specified as





=
otherwise 0

station  ground with ecommunicatcan  sensor satellite/ if 1 gi
qt

ig

The values of t
ijo and t

ijq are derived using the methods described in the subsection describing astrodynamics.

Whenever one or more sensors view a target, scientific value is gained by the observation.  This value is
specified quantitatively as:

uslysimultaneo  target observing  and  /sensorssatellites from  valueadditional

 target observing sensor satellite/ from value

2121
jiiw

jiu

jii

ij

=

=

                                                     
1 This is a simple model to handle the assumption that two observations by the same type sensor during any time period

does not have twice the value of one observation.
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Decision Variables

In time period t, the decision variables are:





=





=

otherwise 0

uslysimultaneo  target observe  and  /sensorssatellites if 1
otherwise 0
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Static Data

Static data is used to specify the data storage capabilities of the satellites.  This data is static in the sense that it
is particular to a sensor/satellite only and does not depend on any targets or their visibility status.  There is an
assumption that ground resources are sufficient for any number of the satellites to be downloading
simultaneously.  Thus each satellite picks the ground station with which it has the maximum transfer rate.
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The values of t
ik  can then be defined recursively as:
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Formulation

Given the data definitions specified above, the mathematical programming formulation is as follows for each
time period t.
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The output of the top-level optimization is at each time t and for each sensor the primary target it is tasked to
look at and whether the satellite downloads observation data or not.

Sensor Planning
The assignments of targets to sensors at each time period are input to the sensor optimization level.  The output
is a pointing command for each sensor for each time period.  The sensors are modeled as being mounted on
platform with two orthogonal gimbals.  These gimbals are referred to as the x and y gimbal angles.

Data

To begin the definition of the data required for this optimizer, first define the following sets:

problem for thehorizon   timethe

 targetsofset  the

=

=

T

R

The model of the sensor includes constraints on the movement of each of the gimbals.  These constraints
include both bounds on the gimbal angles and slew rate constraints. The following data is defined for each

Tt ..1= .

)(rad/direction each in sensor  for the limits rate slew].[

(rad)direction each in sensor  for the limits angle gimbal]][.[

direction) on  boundupper  is ).( (e.g.  at time )(target 

  see  toable be sensor to for the angles gimbal on the bounds required]][).[(

} at timesensor   the toassigned is |{)(

txyS

xyluP

xuxtAttBr

xylutA

trRrtB

r

r

∆=

=

∈

=

∈=

The notation [xy] is used to represent combinations of the specified variables.  For example, S.[xy] indicates
that both variables S.x and S.y are defined.
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Decision Variables

The primary decision variables are:



 ∈
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The variables are defined for all Tt ..1= and the values of p(0).[xy] are specified as input.  The )(twr variables

are obviously a function of the )(tp variables.  Specifically, 1)( =twr  if and only if the following are true:

uytAytplytA
uxtAxtplxtA

rr

rr

).().().(
).().().(

≤≤
≤≤

In support of this, define the following binary variables:
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The relationship between )(twr and )(tbr is then
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where M is a larger than the absolute value of any )(tAr  entry.

Constraints

The pointing limits for the sensor are specified simply as:
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The slew rates are specified as:
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Objective Function

The objective function maximizes the value gained from achieving all of the assignments. This is calculated by
multiplying the )(twr  variables by )(tVr .
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The null position of the sensor is pointing at the long-term targets, unless there is value to be gained from an
ephemeral target2, the sensor should try to point in the null position.  To address this, a cost will be attributed
to moving the sensor from the null position. Specifically, a term will be added to the objective function to

minimize the absolute value of the ]).[( xytp  variables. Define the non-negative variables ]).[(][ xytD +−  as:
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The objective function will include a term to minimize
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Formulation

Given the data definitions specified above, the mathematical programming formulation is as follows.
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2 The value from observing an ephemeral target is assumed to be greater than observing a long-term target.
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Future Work
The development of the EPOS system has progressed so that both maneuvering and coasting satellites can be
optimized to achieve optimal target viewing.  A limitation of the current system is that maneuvering satellites
treat their sensors as having a fixed attitude while coasting satellites utilize an autonomous sensor optimization
level.  The next version of EPOS, currently being developed, will merge these two approaches.  Specifically,
both maneuvering and coasting satellites will be addressed and all satellites will optimize the pointing of each
sensor.  In effect, the current version of EPOS and the capabilities of the previous version [1] will be merged
into a single approach.
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Abstract:  The development of onboard autonomy capability is the key to a set of vastly important strategic
technical challenges facing NASA: increased efficiency in the return of quality science products, reduction of
mission costs, and the launching of a new era of solar system exploration characterized by sustained presence,
in-situ science investigations and missions accomplished via multiple, coordinated space platforms.

Autonomy is a central capability for enabling missions that inherently must be accomplished without the
benefit of ongoing ground support.  This constraint may arise due to control challenges, e.g., small-body
rendezvous and precision landing, or may arise due to mission planning challenges based in the difficulty of
modeling the planetary environment coupled with the difficulty or impossibility of communications during
critical or extended periods.  A sophisticated Mars rover, a comet lander, a Europan under-ice explorer, and a
Titan aerobot are examples of missions, some unprecedented, which typify these challenges.

This paper describes the set of NASA missions that aim to utilize autonomy and recent developments in the
creation of space platform autonomy capabilities at NASA.

1. THE NASA MISSION CHALLENGES

NASA is embarking on a new phase of space exploration.  In the solar system, an initial reconnaissance of all
of the planets except Pluto has been accomplished.  In the next phase of planetary exploration, the emphasis
will be on direct, i.e., in-situ scientific investigation in these remote environments.  In the next phase of
exploration relating to astrophysics, the emphasis is on new observing instruments – often based on principles
of interferometry – to achieve unprecedented resolution in remote observing.  A theme that runs through all of
these science missions is the search for life.

The development of onboard autonomy capability is on the critical path to addressing a set of vastly important
strategic technical challenges arising from the NASA mission set: increased efficiency in the return of quality
science products, reduction of mission costs, and the launching of a new era of solar system exploration
characterized by sustained presence, in-situ science investigations and missions accomplished via multiple,
coordinated space platforms.  These new classes of space exploration missions, as a rule, require new
capabilities and technologies.

Paper presented at the RTO AVT Course on “Intelligent Systems for Aeronautics”,
held in Rhode-Saint-Genèse, Belgium, 13-17 May 2002, and published in RTO-EN-022.
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1.1 Mars and Autonomy

Mars is a primary target for future exploration, and certainly has captured the interest of the general public.
The set of Mars missions under development differ from previous space exploration in one important aspect:
they are being conceived as a collective whole, with the establishment and evolution of infrastructure at Mars
as an important sub-goal.

The next rover mission to Mars will be the Mars Exploration Rover (MER) mission, which will place two
rovers on the surface of Mars in 2004.  This mission will extend the accomplishments of the famous 1997
Mars Pathfinder Sojourner rover mission in several ways.  The larger size of the physical rover platforms
allows for significantly upgraded payloads of half a dozen sophisticated instruments and tools on each rover.
The traverse objectives for the rovers will be 100 meters per day, in contrast to Sojourner, which did not depart
the vicinity of the lander.  Finally, the nominal mission lasts 90 sols (Martian days), compared to 30 for Mars
Pathfinder.

The Mars mission following MER will be the Mars Reconnaissance Orbiter (MRO) mission, in 2005.
Although MRO will not contribute new autonomy capabilities, it is an example of how missions in the Mars
program are related and support each other.  MRO is expected to be a communications relay for future Mars
surface missions, and more specifically, it will collect high resolution surface images, and these images will be
utilized to plan landing sites for the more sophisticated Mars rover mission to follow, called Mars Smart
Lander (MSL), in 2009.

In the words of the MSL project manager, this mission will be “the most software-intensive, autonomy-
dependent mission” to date.  The emphasis on autonomy capabilities derive directly from the report generated
by the study of the project’s Science Definition Team (SDT).  Scientists are desirous of greater efficiency and
reliability in commanding planetary surface rovers to generate science return, following the exciting, but often
tedious experience with Sojourner on Mars Pathfinder, and anticipating that improvements on Mars
Exploration Rover may be of an incremental nature.

The autonomy capability requirements generated by scientists on the SDT generally fall into three areas:  the
ability to command the rover, in a single command cycle, to move to a destination beyond the visible horizon;
the ability, in a single command cycle, to reliably place an instrument on a designated target; and, for the first
time, the ability to perform some limited science activities while traversing from one identified science
investigation site to another.

The key phrase in the foregoing is “in a single command cycle.”  Scientists and mission operators together
have experienced frustration at the number of iterations sometimes required to reach a desired location or to
successfully place an instrument.  When the complicated constraints of light-time delay, in-view
communication periods, and solar illumination cycles on Mars are factored in, such inefficiencies translate into
serious limitations on overall science return.  Conversely, if such actions can be accomplished autonomously
and reliably in a single command cycle, overall science return is boosted greatly.

Another autonomy need on MSL is for safe and precise landing.  The mission plans to utilize active hazard
detection and avoidance capabilities during descent not only to achieve safe landing, but also to ensure that the
target science sites are accessible from the landing site.

Looking further in to the future, infrastructure on Mars may include permanent science stations on the surface,
propellant production plants, and a network of communications satellites in orbit to extend internet-like
capability to Mars, and to enable the coordination of an array of heterogeneous, autonomous explorers: rovers,
balloons, airplanes, even subsurface devices.  No longer would each mission be conceived and executed in
isolation, but through a combination of in situ and multiple platform mission concepts humanity’s presence at
Mars would continually expand, culminating in the arrival and safe return of the first human explorers.  See
Figure 1.
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Figure 1.  Future Mars Missions:
Mars Exploration Rover, Mars Smart Lander, Mars Outposts

1.2 Small Planetary Bodies and Autonomy

Small planetary bodies – comets and asteroids – pose different kinds of challenges to space platforms that
would investigate them in situ.  Their gravitational environments are more difficult to model, particularly if the
shape of the body is well off the spherical, and if it is tumbling rather than rotating.  Achieving stable orbit is a
complex task, much less landing.  The environment of a comet is the most unpredictable: gas and dust and
perhaps larger chunks of material can present hazards as well as make it difficult to select and track scientific
targets of investigation.

The next mission to grapple with a cometary environment will be the Deep Impact mission, which will
rendezvous with Comet Tempel 1 in 2005.  The space platform for this mission consists of a flyby spacecraft
and a detachable impactor.  The impactor is designed to excavate below the surface of the cometary nucleus
and reveal primordial material thought to be unchanged from the origin of the solar system.  The targeting of
the impactor has to be autonomous, because there is insufficient time to return images, analyze them, and send
appropriate commands to the impactor.  The image processing to guarantee successful impact is complicated
by lighting, uncertain surface topography, and the inherent uncertainties of the environment.

The proposed Comet Nucleus Sample Return (CNSR) mission will involve autonomous landing and the return
of samples.  The unpredictable and volatile cometary environment will amplify the requirements for hazard
detection and avoidance capabilities during descent and while on the surface.  This mission concept calls for
multiple site investigations, i.e., multiple takeoffs and landings in the course of the mission.  The engineering
and science considerations of autonomy merge in small body missions, as the same phenomena which
represent potential engineering hazards (e.g., the formation of jets on comets), are also the phenomena of
scientific interest.  See Figure 2.

Figure 2.  Future Small Body Missions: Deep Impact and Comet Nucleus Sample Return
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1.3 Other Planetary Targets and Autonomy

The proposed Titan Organics Explorer would utilize a combination of platform concepts to conduct pre-
biological chemistry and atmospheric investigations at Saturn’s intriguing satellite, long known to possess an
atmosphere, organic materials, and the possibility of a non-water ocean in an entirely different temperature
regime.  The platform concepts for this mission include an orbiter combined with an aerobot with detachable
rover deployables.  Aerobots utilize natural thermal cycles to periodically go aloft to sample multiple sites
over a wide range of territory.  When worthy science sites are found, the in situ investigation capabilities of
surface explorers like rovers are then utilized.  This type of exploration has a random element however, since
landings can be only semi-directed, using direct control only of the vertical dimension, along with knowledge
of wind patterns.

Europa is a notable focus for future exploration, second only to Mars as a target of interest within the solar
system.  The reason, of course, is the possibility that a liquid water ocean may exist beneath its surface, with
obvious implications for the search for life.  Three mission concepts for Europa exploration have been studies:
an orbiter mission that can resolve the question of whether the subsurface ocean exists or not, followed by a
lander mission, and ultimately, a cryobot/hydrobot mission.  The orbiter and lander would have the additional
challenge of survivability in the intense radiation environment at Europa, deeply embedded in the Jovian
magnetosphere.  If the Europan ocean does indeed exist, the cryobot/hydrobot mission concept involves
melting through the ice surface of Europa and releasing an underwater submersible to reach and explore the
ocean floor, looking for signs of life.  The submersible would require high degrees of autonomy to perform its
mission successfully, including onboard algorithms embodying knowledge of possible biosignatures.  See
Figure 3.

Figure 3.  Other Future Planetary Missions: A Titan Explorer, A Europan Submersible

1.4 Astrophysics and Autonomy

Looking beyond the solar system, NASA has a series of next-generation deep sky observing missions planned
in its Origins Program, whose end goal is the capability to image Earth-like planets around nearby stars, even
to resolve features and perform spectroscopic investigations of such planets.  The hallmark mission in this
series is known as the Terrestrial Planet Finder, a deep-space-based interferometer consisting of multiple
elements.  These elements are guided at unprecedented precision to first null the light, via interference effects,
coming from the primary star in these distant stellar systems, then collect the precious photons coming from
any planetary companions it may possess.  The autonomy challenge in this mission involves guidance and
control of the interferometer itself during observations, and detection of and compensation for faults and
performance degradations in the elements such that the collective capability of the multiple-platform
interferometer is maintained.  See Figure 4.
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Figure 4.  A Future Astrophysics Mission: Terrestrial Planet Finder

2. THE EMERGENCE OF AUTONOMY

Intelligent, highly autonomous space platforms will evolve and deploy in multiple phases.  The first phase
involves automation of the basic engineering and mission accomplishment functions of the space platform.
The relevant capabilities include mission planning and resource management, health management and fault
protection, and guidance, navigation and control.  Stated differently, these autonomous capabilities will make
the space platform self-commanding and self-preserving.  Some of the relevant technologies include Artificial
Intelligence (AI)-based planning & scheduling, model-based reasoning, and intelligent agents.  In this initial
engineering-directed autonomy phase, NASA space platforms will achieve onboard automated closed loop
control among: planning activities to achieve mission goals, navigating, maneuvering, and deploying
instruments and sensors to execute those activities, and detecting and resolving faults to continue the mission
without requiring ground support.  Also in this phase, the first elements of science-directed autonomy will
appear.  However, the decision-making capacity to determine how mission priorities should change and what
new mission goals should be added in the light of intermediate results, discoveries and other events would still
reside with scientists and other analysts on the ground.

Work on automating the spacecraft will continue into challenging areas like greater onboard adaptability in
responding to events, closed-loop control for small body rendezvous and landing missions, and operation of
the multiple free-flying elements of space-based telescopes and interferometers.  In the next phase of
autonomy development and deployment, a portion of the scientist’s awareness will begin to move onboard,
i.e., an observing and discovery presence.  Knowledge for discriminating and determining what information is
important would begin to migrate to the space platform.  The relevant capabilities include feature detection
and tracking, object recognition, and exploratory data sampling.  At this point, the space platform begins to
become self-directing, and can respond to greater uncertainty within the remote operating context.  Ultimately,
a significant portion of the information routinely returned from platforms would not simply and strictly match
features of stated prior interest, but would be deemed by the onboard software to be “interesting” and worthy
of further examination by appropriate science experts on the ground.  At this point, limited communications
bandwidth would then be utilized in an extremely efficient fashion, and “alerts” from various and far-flung
platforms would be anticipated with great interest.

For surveys of NASA autonomy technology activities, see [1,2].

2.1 The Remote Agent

The most notable and successful effort in spacecraft autonomy development at NASA to date has been the
Remote Agent, a joint technology development project by NASA Ames Research Center and the Jet
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Propulsion Laboratory (JPL) [3].  The Remote Agent Experiment was conducted on the New Millennium
Deep Space One (DS1) mission in May 1999, whose primary goal was to flight validate new technologies.

The Remote Agent consists of a Smart Executive [4], a Planning and Scheduling module [5], and a Mode
Identification and Reconfiguration (MIR) module [6].  The onboard system receives mission goals as input,
which is translated to a set of spacecraft activities free of resource and constraint violations by the
Planner/Scheduler.  The Smart Executive provides robust, event-driven execution, with runtime monitoring
and decision-making.  MIR continuously monitors representations of sensor data, identifying current
spacecraft modes or states, and when these are fault modes, selects recovery actions.  Other functions such as
guidance, navigation and control, power management, and science data processing are domain-specific
functions that can be layered on top of this basic autonomy architecture, and are developed or modified for
each new mission.  The Remote Agent was designed to serve as a general spacecraft autonomy architecture.

The demonstration objectives of the Remote Agent Experiment (RAX) on DS1 included nominal operations
with goal-oriented commanding, closed-loop plan execution, onboard failure diagnosis and recovery, onboard
planning following unrecoverable failures, and system-level fault protection.  All of the technology validation
objectives for RAX were accomplished.  Additional details may be found in [7].  The Remote Agent was a co-
winner of the NASA Software of the Year Award in 1999.

2.2 Some Definitions

There is often confusion on the differences between automation and autonomy.  Acknowledging that the
definitions given here may not be regarded as the final word on the subject, we make the following
distinctions:

Automation applies to the creation of functionality (typically via algorithms), which can be fully defined
independent of the context in which the functionality will be deployed, or when the context (e.g., the remote
environment) can be modeled with sufficient confidence that the required functionality is well understood.

Autonomy, on the other hand, applies to the creation of functionality (typically via reasoning or inference
capability), which is designed to be effective when context is important, and when the ability to model context
(again, e.g., the remote environment) is limited.  Autonomy specifically includes the capability to assess
context and to support decisions based on knowledge that will only be available when the functionality is
accessed, not when it is created.  Knowledge and importance of context is the key consideration for
distinguishing the need for automation vs. autonomy.

Handling of context is the central difference, but there is also a way in which automation and autonomy are
similar: the functionality being created, whether based in algorithms or reasoning, is in both approaches fixed
at deployment time (typically, launch time).

In the remainder of this section, we examine the research and technology investment areas that are
contributing to the creation of autonomy capabilities for NASA missions.  All of the work described is
sponsored either by NASA’s Intelligent Systems Program or NASA’s Mars Technology Program.

2.3 Planning and Execution

Automated planning, scheduling, resource management and execution form, arguably, the core of system-level
autonomy.  These capabilities, when integrated, provide the basis for a space platform to perform engineering
functions in closed-loop fashion onboard.

Planning involves reasoning about activities that will accomplish a desired set of goals.  Automated planners
work with models of tasks, resources and constraints, determining a set of activities which when executed,
moves the space platform from its current state to a state where the desired goals have been achieved.  In
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addition to the basic task of planning (determining the relevant tasks and their ordering), the planning system
must also determine the absolute or relative timing of the tasks (scheduling), ensure that no relevant resources
are oversubscribed (resource management) and that no flight constraints are violated.  The mission plan
provided by the planning system is then passed to an execution system, or executive.  The executive issues the
specific commands contained in the plan, and monitors their execution.  Execution violations can be handled
in several ways: the executive typically has mechanisms to accomplish local recoveries, global recoveries are
the domain of system-level fault protection, and finally, the planning system itself can generate a new plan
when it is determined that assumptions in the plan have been violated, e.g., the conditions of the operating
environment, or the availability of a resource or capability.

The planner from the Remote Agent, known now as EUROPA, has continued to mature.  Other topics, relating
to the interaction of planning and execution, are also under investigation [8].  There is work on contingent
planning, which is examining the partial expansion of alternate paths of execution in a mission plan [9].  The
idea is to anticipate the kinds of failures that may occur during plan execution, and to predetermine recovery
actions for those failures, thereby providing both for greater robustness of execution in the plan, and obviating
the need to engage full-up, computationally expensive replanning by default when execution failures occur.
Another benefit is that ground personnel have the opportunity to validate alternate execution pathways before
they may be engaged.

Another successful planning system is ASPEN/CASPER [10].  This planner is based on a continuous planning
model where a plan is always being modified, either to optimize it further, or to incorporate the latest
information available.  This process can begin from a description of an initial state.  ASPEN has been
deployed on several applications, notably for the Antarctic Mapping Mission, where it achieved an order-of-
magnitude reduction in the time required to create schedules for downlink activities, as well as supported
“what-if” negotiations between the science and operations teams.  CASPER is the high-performance version of
ASPEN designed for onboard use, which can achieve plan turnarounds in the tens of seconds.

2.4 Science Data Understanding

Scientists are naturally skeptical of an autonomous capability that purports to be able to interpret raw science
data in an informed fashion.  The key to progress in this area is working closely with scientists to properly
define the scope of any such onboard capability so that it is realistic and value-added.  As described above,
scientists associated with the Mars Smart Lander mission are interested in a capability to collect science data
during traverses and to alert scientists on the ground when certain pre-defined phenomena have been detected.

Science-directed autonomy will typically rely on technologies for pattern and object recognition and machine
learning techniques.  The system known as QuakeFinder was successful in the use of a change detection
capability [11].  QuakeFinder applies a registration technique to before and after images.  Rather than insisting
on global registration, the technique instead focuses on successful registration of local regions in the images,
and as a side effect detects change along the boundaries of those regions.  The technique is particularly suited
to the detection of linear displacements.  QuakeFinder has been successfully applied to the detection of ground
movement due to earthquakes, detecting such motion at 1/10 pixel resolution.  This system is now being
applied to Voyager and Galileo images of Europa, looking for evidence of surface changes that may be
consistent with the existence of a subsurface ocean.

Object recognition techniques previously applied successfully to the automated detection of volcanic features
in the Magellan SAR image set of Venus are now being applied to the more general problem of crater
detection on planetary bodies [12].  The crater detection problem is harder because craters may overlap, be in
various stages of degradation, and be observed in diverse lighting conditions.  Nonetheless, this crater
detection capability has been successfully trained on Mars images and tested on lunar images.  Putting this
kind of capability onboard would be value-added from a planetary scientist’s viewpoint: crater studies are
more about determining the number and distribution of craters on a planetary surface, rather than examining
images of each individual crater.
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Another activity is examining the interaction of onboard science data analysis with mission planning and
execution for a Mars rover [13].  The data analysis capability here is a combination of texture analysis and
spectral analysis looking to detect mineralogical signatures.  The system summarizes and prioritizes science
targets based on data collected and analyzed during traverse activities, and generates an update to the mission
plan.  This new plan can be communicated to scientists on the ground for modification and approval or
executed autonomously.

Figure 5.  Craters Detected in Viking Data

2.5 Safe and Precise Landing

Many future mission concepts call for the ability to land space platforms on planetary bodies, ranging from
small and hard-to-model asteroids and comets, to larger targets with more predictable environments, such as
Europa and Mars.  Several machine vision-based techniques have matured sufficiently to be the basis for safe
and precise landing capabilities [14].

For example, spacecraft motion can be estimated accurately by precisely tracking features during descent.
These image-based techniques can estimate motion to 1% accuracy of the total distance traveled.  Feature
tracking also can be used to accurately estimate position relative to defined landmarks, such as the centers of
craters.  These feature-based navigation techniques use different methods than, e.g., the crater recognition
algorithms described earlier.  When the objective is navigation, the task is to select features that can be reliably
tracked under different viewing angles and lighting conditions.  Features of scientific interest, however, are
selected by different criteria, and may or may not line up with features that are useful to support navigation.

The stereo techniques that support surface navigation for rovers can provide critical information during the late
stages of descent, when elevation knowledge of the topography directly below can be the key to final guidance
to a safe landing spot.  These techniques can compute elevation information to greater than one part in a
hundred accuracy relative to altitude.

These vision-based techniques are being combined into an integrated hazard detection and avoidance
capability for missions such as Mars Smart Lander, to locate and guide the landing spacecraft to a safe zone
with local surface roughness of less than ten centimeters and local slopes of no greater than ten degrees.  Path
planning algorithms also can guarantee that there is accessibility from the landing site to the pre-defined
science investigation sites.  Benchmarking indicates that all of the required computation can be achieved in
real-time and near real-time during the critical and intense entry, descent and landing sequence.
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Figure 6.  Vision-based Motion Estimation, Position Estimation,
Hazard Detection and Avoidance

2.6 Mobility

Mobility is a defining feature of planetary rovers.  Future rover missions are being planned now around the
ability to go further and through rougher terrain than missions to date have accomplished.   The four salient
questions of mobility are:  “Where am I?”, “What is the environment surrounding me?”, “Where should I be?”,
and “How do I get there?” .  These are the challenges of, respectively, position estimation, terrain estimation
and obstacle detection, goal selection and tracking, and trajectory generation and path planning [15].

Addressing the challenge of position estimation has proven to be most difficult in the barren, rough, natural
terrain known to exist on Mars.  While current capabilities are able to provide error bounds down to 3% of the
distance traveled, newer techniques promise to reduce that margin by an order of magnitude.  These techniques
include visual odometry for tracking the motion of features in navigation imagery to independently measure
displacement of the vehicle, and visual servoing for tracking the motion of a selected visual objective to ensure
motion toward that objective.  Sensor fusion can play an important role to merge multiple measurement
sources through statistical and logical filters, improving an overall position estimate.  Related terrain
estimation techniques address this challenge by estimating soil properties through visual and contact methods
to determine sinkage and slippage of the vehicle. Other techniques match displacement of terrain map features
on an intermittent basis to enhance estimates of vehicle position.

Obstacle detection via stereo processing is by now a standard technique, but is limited currently to providing
surface elevation estimates only in the immediate vicinity of the rover.  Continuing work in this area includes
elevation map seaming to merge elevation maps provided by separate sets of stereo image data, and wide
baseline stereo for the correlation of imagery taken from separate locations, providing elevation maps out to
much greater ranges than is currently possible.  Also, multi-resolution mapping techniques correlate surface
and orbital imagery.

Mission operators currently perform the tasks of goal selection and tracking.  Moving this function onboard
the vehicle will require maturation of the position and terrain estimation techniques described above along
with maturation of onboard techniques for planning and execution.

Finally, the challenge of trajectory generation and path planning concerns methods for navigating from the
current location to the goal location, given the terrain.  At this time, it appears that the techniques to be utilized
on the MER mission will be sufficient for missions like MSL.

M

P
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2.7 Distributed Autonomy

Mission concepts involving multiple space platforms are becoming increasingly common.  The first examples
of so-called spacecraft constellations will likely be in Earth orbit, where fleets of satellites carrying different
sensors and instruments may coordinate observations and responses to provide global coverage for the
detection of events such as volcanic eruptions or forest fires.  Some future space-based observatories will
consist of multiple elements, carefully arrayed and maintained to create apertures of unprecedented scale.
Finally, heterogeneous assets deployed at Mars will collectively perform science missions, as well as count as
the first true example of off-planet infrastructure.

The engineering capabilities of a single space platform do not scale simply to appear as a coordinated
capability across multiple platforms.  This is most apparent for mission planning, considered by many to be the
core capability of system-level autonomy.  An important consideration is architecture.  Three different
architectures for distributed planning are under study [16].

Perhaps the most straightforward is a centralized architecture, where a specially designated space platform
performs the planning for all platforms.  This is conceptually indistinguishable from mission planning on a
single platform but has distinct disadvantages: intense communications to provide timely relevant data from all
of the platforms to the central platform, and the need to update the models used by the central planner
whenever another platform is added to the configuration.

In a distributed architecture, a central planner only allocates goals to the separate platforms, each of which has
a planner of its own to autonomously achieve the goals assigned to them.  Less communications are required
in this architecture, but planners do appear everywhere, and some models used by the planners still need to be
shared, so that the central planner can make informed choices about assigning goals.  Whenever another
platform is added to the configuration, the central planner requires a minimal model of that platform’s
capabilities, so that it can continue to assign goals appropriately.

In a market-based architecture, each platform has a model of its own capabilities, and bids to accomplish goals
posted in auctions managed by a central platform.  This architecture is the most scalable, because no platform
requires models of the capabilities of other platforms, which can be added to the configuration at any time.
There is global computational overhead however, for all planners examine all goals.

The first example of distributed autonomy in flight will occur in 2004, when the Autonomous Sciencecraft
Constellation, a technology experiment on the New Millennium ST-6 mission, will test an integrated capability
for onboard mission planning and onboard science data analysis aboard the Air Force’s three-satellite
constellation known as Techsat-21 [17].

2.8 The Role of Software Architecture

The Remote Agent technology experiment on DS-1 made clear the central role that software engineering must
play in deploying autonomy capabilities in flight.  In particular, it is highly desirable that the software
architecture used in flight provides direct support for autonomy capabilities.  The Mission Data System (MDS)
is a flight/ground/test software architecture conceived and designed to be such an autonomy-friendly
architecture [18].  In this goal- and state-based architecture, goals are defined to be constraints on the values of
state variables over specified time intervals.  Estimators interpret measurement and command evidence to
estimate state.  State variables hold state values, annotated with estimates of uncertainty, critical for informed,
autonomous decision-making.  Controllers issue commands, striving to achieve goals.  Explicit models express
specific relations among states, commands and measurements.  Goals and states are the atomic concepts of
autonomy, and MDS thereby provides a head start on implementing autonomy capabilities.
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The MDS approach offers other important benefits, such as providing a common language of discourse for
systems engineers and software engineers, who otherwise interact imperfectly at best across a pile of textual
requirements.  MDS also utilizes a components-based software architecture, and designs out certain classes of
software defects at the architectural level, such as certain race conditions, along with units or dimensionality
errors.

The Mars Smart Lander mission has adopted the MDS software architecture for these reasons, including its
system engineering approach of state analysis.

3. SUMMARY: LOOKING FARTHER INTO THE FUTURE

The preceding on the emergence of autonomy included descriptions of the initial phases of development and
deployment of autonomy capabilities for space platforms:  Engineering-directed autonomy will place many
traditional spacecraft functions such as mission planning, execution, resource management, guidance and
control, navigation and fault protection onboard in closed-loop fashion.  Science-directed autonomy will allow
scientifically interesting phenomena to be detected via onboard capabilities, supported by onboard mission
replanning.

Beyond these initial phases, we can project a phase where space platforms become the analogues of web
nodes, with direct interaction enabled among space platforms, the science community, and the general public.
Interested users may “register” with autonomous spacecraft to learn about breaking results.

The next phase may involve self-organizing constellations of space platforms consisting of heterogeneous
assets performing joint, coordinated execution of mission objectives, with self-calibration and adaptation
enabled.

A phase beyond that may be characterized by long-term survivability of ten years or more, even with zero
ground support, achieved by onboard contingency handling and self-repair, including functional redundancy
achieved via software, particularly planning capability.

We’re not done yet.  The next phase may involve onboard reprogramming and discovery, with the spacecraft
authorized to modify science objectives and the mission plan based on onboard learning and discovery
capabilities.

And in a final phase, with spacecraft and mission evolution enabled, space platforms may not only repair
themselves, but may also refine and improve their functionality, as a more efficient form of mission redesign
and reprogramming.

As with any vision, the most remote projections get a bit harder to track and to immediately credit.  But we can
be confident that autonomy is here to stay as a central capability for achieving future NASA missions.
Autonomy is multidisciplinary in nature and must be the product of the inputs of computer scientists,
spacecraft engineers, mission designers, ground system engineers, mission operators, scientists, software
engineers and systems engineers.
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Abstract: Multi-agent systems that arose from research in Distributed Artificial Intelligence are now
considered as a new paradigm to design and model complex systems. The design of complex systems seems to
be more intuitive with cognitive agents because the designer works at a high level of abstraction where the
agent is an important granularity entity with aspects of calculation, reasoning and control which make it quasi
autonomous. After a brief overview of the required notions to understand the multi-agent systems' domain, we
describe the JACK agent-oriented environment on top of which we are developing the SCALA environment
that provides a multiagent-based methodology and tool for the design of complex systems. In SCALA, the
global behaviour (i.e. its goal) of the system is modelled through a functional approach based on the definition
of a graph of dependencies between the basic behaviours (i.e. tasks to accomplish to achieve a goal). The
definition of this graph provides the necessary knowledge to manage cooperation between the agents and to
plan reactively their activities when new events occur and when they have to reorganise themselves.

1. Introduction

Multi-agent systems that arose from research in Distributed Artificial Intelligence are now considered as a
new paradigm to design and model complex systems. Those systems are used for several well-known reasons:
their ability to run in unpredictable or less predictable environments, to react to unknown events, to reason, to
cooperate, to learn and to be pro-active. The design of complex systems seems to be more intuitive with
cognitive agents because the designer works at a high level of abstraction where the agent is an important
granularity entity with aspects of calculation, reasoning and control which make it quasi autonomous. Then
the distribution of the control on the agents gives the system more robustness, efficiency and a better reactivity
thanks to sophisticated coordination mechanisms. Agent-oriented programming addresses the need for
software systems to exhibit rational, human-like behaviour in their respective problem domains. Traditional
software systems make it difficult to model rational behaviour, and often programs written in these systems
experience limitations, especially when attempting to operate in real time environment.

The aim of this paper is not to present the entire domain of research on multi-agent systems, but to point out
characteristics that seem to be relevant for the design of complex systems. So, in section 2 we overview the
required major notions to understand the multi-agent systems' domain. In section 3 we describe an example of
the JACK agent-oriented environment on top of which we develop the SCALA project that provides a
multiagent-based methodology and a tool for the design of complex system (section 4). Then, we expose in
section 5 the perspectives of this work to extend it to time constraints.

2. Multi-agent Systems

In this part, we introduce the notion of agent and the advantages to adopt such a technology of programming.

2.1. Definitions

Although there is no consensus on the agent definition, we can assume that an agent is a computer system that
is situated in some environment, and that is capable of autonomous action in this environment in order to meet
its designed objective [WOO 95].

Paper presented at the RTO AVT Course on “Intelligent Systems for Aeronautics”,
held in Rhode-Saint-Genèse, Belgium, 13-17 May 2002, and published in RTO-EN-022.
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The notion of autonomy means that agents have control both over their own internal state, and over their
behaviour. They act without the intervention of humans or other systems.
To define the notion of intelligent agent, the notion of flexibility is added. Intelligent agents can be
characterised by their ability to carry on flexible autonomous action [JEN 98], i.e. they present:

• Reactivity: intelligent agents are able to perceive their environment, and respond in a timely fashion to
changes that occur in it to satisfy their design objectives;

• Pro-activeness: intelligent agents are able to exhibit goal-directed behaviour by taking the initiative in
order to satisfy their design objectives;

• Social ability: are capable of interacting with other agents (and possibly humans) in order to satisfy their
design objectives.

In a dynamic and uncertain environment, these characteristics are not easy to obtain. The agents have to
continually respond to their environment to reactively take into account its changes, while maintaining their
goals. The difficulty for an agent is to deal simultaneously with these two aspects. The agents thus have to
attempt to achieve their goals, but not in a blindly fashion. They continually have to perceive the environment
and be ready to quickly react to new situations. The carried on goal can be questioned, or some changes in the
environment can impact the way to achieve it, etc.
The last important point is social ability. Agents have to negotiate or cooperate with others to achieve shared
goal. This social ability includes the possibility to define organisational structure where agents hold roles and
obey to social rules. The multi-agent approach specially focuses on these aspects.

A multi-agent system is a distributed system composed by several agents interacting with each other's. A
multi-agent can be characterised by the following points as reminded in [BRIOT 01]:

• Each agent has limited information or capabilities;

• There is no global control of the multi-agent system;

• The data are decentralised;

• The calculation is asynchronous.

Multi-agent systems have the traditional advantages of the distributed and concurrent problem solving, such as
modularity, computation time (parallelism) and reliability (due to the redundancy of resources and
capabilities). Multi-agent systems are also interested in developing sophisticated interaction mechanisms, such
as cooperation, coordination and negotiation.

2.2. Agents versus objects

When one considers only the relative properties of agents and objects, one can have difficulties to see the
added value of agents. Indeed objects are computational entities that encapsulate some states, are able to
perform actions (methods), and communicate with other objects through message passing. Yet there are
significant differences between agents and objects [WOO 99]:

The principle of encapsulation is the idea that objects can have control over their own states, i.e. they exhibit a
certain autonomy over their states. But an object does not exhibit control over its behaviour. A method m of an
object is executed by this object when another object invokes it. The object that performs the action (method
m) has no control over this invocation. The decision lies with the object that invokes the method. In the agent
case, we do not think of invocation, but in requesting actions. The decision lies with the agent that receives the
request. The agents have the control over the decision to execute an action or not.

Although one can integrate flexible (reactive, pro-active, social) autonomous behaviour in object-oriented
programs, this kind of behaviour is not inherent to the object philosophy, and this means to implement agents’
behaviour in an object-oriented language.

Another important distinction is that agents have each their own thread of control, whereas there is only one in
an object-oriented program. Even if we take into account the concept of concurrency that arrives in object-
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oriented languages, such as the multi-threading in Java, it does not capture the idea of autonomous entities. A
multi-agent system is inherently multi-threaded.

3. JACK: An agent infrastructure [HOW 01]

A host of environments support the development of multi-agent applications each presenting different
characteristics. An effort of standardisation is led by the FIPA (Foundation for Intelligent and Physical
Agent).

In this section, we are describing one of them, the agent-oriented language JACK software, on which lies our
work presented in section 4. JACK is an agent-oriented development environment build on top of Java. It
addresses the need for software systems to exhibit rational, human-like behaviour in their respective problem
domains. The agents used in JACK are intelligent agents. They model reasoning behaviour according to the
theoretical Belief Desire Intention (BDI) model of Artificial Intelligence developed by Rao and Georgeff
[RAO 95]. More precisely, following the BDI model the JACK agents are autonomous entities that have goals
to achieve thanks to events to which they are sensitive. To determine the way to achieve a goal, the agents
have plans. Each plan describes the way the agent has to react to cope with a given situation. Consequently, an
agent attempt to achieve a goal (its desire) using the relevant plan (its intention) that it will have determined in
analysing its knowledge (its beliefs) on the external environment.

So, a JACK agent can exhibit reasoning behaviour under both pro-active (goal directed) and reactive (event
driven) stimuli. Each agent has:

• A set of beliefs about the world;

• A set of events that it will respond to;

• A set of goals that it may arise to achieve;

• A set of plans that describe how it can handle the goals or events that may arise.

Let us now detail JACK specific classes [JAR 01]:

The Agent class

The Agent class embodies all the functionality associated with a JACK intelligent agent. It allows to define
the behaviour of an agent, its capabilities, the type of messages and events to which it is sensitive and the
plans it uses to achieve its goals. Each JACK agent is associated to an independent execution process (a Java
thread).

In general, the definition of this class needs to include the following conceptual statements:
• Knowledge Bases which the agent can use and refer to
• Events (both internal and external) that the agent is prepared to handle
• Plans that the agent can execute
• Events the agent can post internally (to be handled by other plans)
• Events the agent can send externally to other agents.

The Database Class

The Database class implements the main data storage device that agents use. Each database class describes a
set of beliefs that the agent can have. It represents these beliefs in a first order, tuple-based relational database
system. The logical consistency of the belief this database contains is automatically maintained. Hence, for
example, if an agent adds a belief that contradicts a belief it already has, the database class detects this and
automatically ejects the old belief. The database class is not the only way that an agent can represent
information. Agents can also include ordinary members and other data storage structures that have been
implemented in Java.
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The Event class

Events motivate an agent to take action. There are a number of event types in JACK, each with different uses.
These different event types help model.

• Internal stimuli; essentially events that an agent sends to itself. These internal events are integral to
the ongoing execution of an agent and the reasoning that it undertakes.

• External stimuli, such as messages from other agents, or percepts that an agents receives from its
environment.

• Motivations that the agent may have, such as goals that the agent is committed to achieving.

Events are the origin of all activity within an agent-oriented system. Whenever an event occurs, an agent
initiates a task to handle it. This task can be thought of as a thread of activity within the agent. This task
causes the agent to choose between the plans it has available, executing a selected plan or plan set (depending
on the event processing model chosen) until it succeeds or fails. If plan execution succeeds, then the event that
initiated it is said to have succeeded. If plan execution fails, on the other hand, there are two options. Under
normal event handling the event is said to have failed after the first instance of plan failure. Under BDI event
handling, a number of plans can be selected for execution and these are attempted in turn, in order to try to
achieve successful plan execution. If the set of chosen plans is exhausted, then the event is said to have failed.
There are a number of event classes in the JACK Agent Language, each representing different types of
motivation to act.

One of the important aspects of the BDI reasoning model at a conceptual level is that it models goal-directed
behaviour in agents, rather than plan-directed behaviour. That is, an agent commits to the desired outcome, not
the method chosen to achieve it. When using the BDI reasoning model, an agent does not simply react to
incoming information, but sets itself a goal that it then tries to achieve. Rather than distracting an agent from
its goal, incoming events are added to an agents knowledge base and can then subtly influence its behaviour.

The key difference between normal events and BDI events is how an agent selects plans for execution. With
normal events, the agent selects the first applicable plan instance for a given event and executes that plan
instance only. The handling of BDI events is more complex and powerful. An agent can assemble a plan set
for a given event, apply sophisticated heuristics for plan choice and act intelligently on plan failure. At least
one of the following characteristics applies to each type of BDI event under the BDI model:

• Meta-level reasoning : it allows precise control over how an agent chooses a plan for execution from the
set of applicable plans. Whenever there is more than one applicable plan instance for a given BDI event, a
special event is posted within the agent. By choosing to handle this event an agent can implement meta-
level reasoning. If the meta-level reasoning plan fails and does not select a plan for execution, then the
default plan selection method is invoked.

• Reconsidering alternative plans on plan failure : if a course of action (plan) fails, an agent can try a
number of other courses of action by attempting any number of applicable plans to achieve the goal that
has been set.

• Re-calculating the applicable plan set : after that the previous selected plan has failed, an agent may select
an alternative plan: it either keeps track of the plan instances that were initially applicable and select
another member of this set; or it re-computes which plan instances are applicable and select one from the
new set, excluding plan instances that have already failed.

Additionally it is possible to further control BDI behaviour by setting behaviour attributes.

The Plan class

The Plan class describes a sequence of actions that an agent can take when an event occurs. Whenever an
event is posted and the agent adopts a task to handle it, the first thing that the agent does is to try to find a plan
to handle the event. Plans are similar to methods and functions from more conventional programming
languages. Each plan is capable of handling a single event. An agent may further discriminate between plans
that declare they handle an event by determining whether a plan is relevant by using specific JACK methods
that can be assimilated to a filter.
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The Capability Class

The capability concept is a means of structuring reasoning elements of agents into clusters that implement
selected reasoning capabilities. This technique simplifies agent system design, allows code reuse and
encapsulation of agent functionality. Capabilities represent functional aspects of an agent that can be plugged
in as required. This capability as component approach allows an agent system architect to build up a library of
capabilities over time. These components can then be used to add selected functionality to an agent. Events,
databases, plans, Java code and other capabilities can all be combined to make a capability.

4. SCALA: A methodology and a tool to design complex systems

At Dassault Aviation, we work on a project named SCALA (Cooperative System of Software Autonomous
Agent) developed on top of the JACK agent-oriented software presented in section 3. SCALA aims at
showing the interest of the multi-agent approach for modelling and designing complex systems, where several
entities have to cooperate to achieve joint goals. SCALA provides a tool and a methodology that enable the
designer to build at a high-level of abstraction the behaviour of a multi-agent systems.

The global behaviour of the system (i.e. its goals) is modelled through a functional approach based on the
definition of the graph of dependencies between basic behaviours, i.e. the tasks to be accomplished by the
agents of the system.

4.1. The objectives

The major objectives carried out in the SCALA project are:

• To provide a tool to prototype multi-agent systems (MAS) in proposing a methodology of design based on
the functional requirements;

• To make easier the modelling and the design of such systems thanks to a high level abstraction language;

• To simulate different types of organisation and communication protocols between agents;

• To constitute and provide libraries of reusable mechanisms and protocols;

• To propose tools to support the design of the system and to monitor the behaviour of the system
(individual and collective behaviour).

In next section, we are focusing on the methodology proposed in SCALA to assist the design of complex
systems.

4.2. A methodology to develop complex systems

This methodology is based on a functional approach enabling designers to elaborate and model the whole
behaviour of the multi-agent system. This methodology is composed of 8 steps:

1. Definition of the graph of functional dependencies;

2. Definition of the sub-graphs (and the goals associated);

3. Identification of the expected relevant events;

4. Description of the elementary behaviours or tasks to be accomplished by the agents;

5. Definition of the agents;

6. Definition of the group of agents;

7. Choice of the social organisations;

8. Choice of the cooperation protocols.
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Now, we are going to detail the different points of this methodology and briefly describe the functioning of
SCALA through a given type of application: the simulation of air combat missions. This presentation allows
us to point out several limitations that we are attempting to overcome in the second part of the presented
study.

4.3. The graph of functional dependencies

The graph of dependencies enables the designer to model at a high level of abstraction the behaviour of the
multi-agent system. This graph is constituted by one or more distinct graphs composed of tasks or basic
behaviours that have to be accomplished by the agents of the system, and the constraints between them. The
definition of the graph provides the necessary knowledge to manage the cooperation between the agents.
Different types of the control either centralised or distributed, can be built depending on which agent(s)
own(s) this knowledge. At this stage, tasks are not allocated yet to the agents. The assignment is made
dynamically (see § 4.11) according to the current situation and the available resources (agents are assimilated
to resources through their skills). Thus we give the agents a certain freedom of action that makes the system
more reactive and allows to avoid some failures such as the use of non-available resources. We have a
proscriptive approach that constrains the behaviours rather a directed one. For example, according to the
constraints on a task, an agent can attempt to ask another agent for help or performs another task which does
not requires the help of another agent .
The graph of dependencies is in fact, at a given level of abstraction, a decomposition of the global behaviour
of the system, close to a decomposition of a problem into sub-tasks, and including the different possible
alternatives for each sub-goal. In that way, the SCALA agents' behaviour is task-oriented.
Furthermore, we will see, in § 4.7 that each task is associated to several JACK plans, that specify the different
methods to accomplish a same task. By default, i.e. without specific associated constraints, each task of the
graph has to be achieved by a single agent.

Let us now detail the constraints between tasks. They are defined by links or connectors expressing notions of
synchronism (at the beginning or at the end of several tasks), exclusion (the execution of one task inhibits
others’), refinement (several methods can be invoked to execute a task) and abstraction (a task is composed of
others). Another type of constraint is about the number of agents required to perform a same task.

The link of precedence:

This link shows that Task Y cannot be executed before
Task X. A task may have several links of precedence and
may also be the predecessor of several tasks.

The connector of temporal synchronisation //:

This connector implies that Task X and Task Y begin
synchronously.

It is also possible to define that N agents have to execute the same task
concurrently. It is the case for the following example where N agents have
to begin Task Z synchronously.

Task X Task Y

Task X Task Y

Task Z

N
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The connector of temporal synchronisation //end:

This connector implies a synchronisation of termination.
Task X and Y must end at the same instant, or N agents
have to end their task at the same instant.

Remark: To realise this connector, the graph must bring
the notion of delays on tasks. But it could be applied
easily in case of interruptible tasks.

The link of decomposition:

The decomposition may be considered as a refinement.

Task X (abstracted Task) is composed of two sub-tasks Y and
Z. The execution of Y and Z is necessary to validate Task X.
The execution of Y and Z is possible only when the
predecessors of X have been realised.

The connector OR:

This connector represents the concept of exclusion
between tasks. The execution of one of the tasks will
prevent the execution of the other linked tasks.

In this example, the activation of Task X will inhibit Task Y one. The choice of the branch is context
dependant.

The connector TN:

This connector implies that the task must be executed N times but with no
constraints on the executors. So a single, or many agents may execute N
times Task X.

Constraints of allocation:

This connector means Task X must be done by N agents but with no
constraints of synchronisation.

When all the agents of the group have to
execute this task, the N is replaced by a star
(*). This permits to leave the constraint on the
number of agents.
But one can also precise if a group has to do
this task: group_name or you can put conditions on the number of agent that has to do the task:
*≥2 (this condition means that at least two agents of the group have to do the task).

Task X Task Y

//end

Task ZN

//end

Task X

Task Y Task Z

Task X Task Y

OR

Task X N

Task X
N

Task X

*
or group_name
or condition on the number of agents
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Series:

A series of tasks must be executed by the same agent
or the same group of agents.
In this example, task X and Y must be executed by a
same agent.

Those all connectors can be merged to express more sophisticated constraints between tasks.

4.4. The definition of the sub-graphs (goals)

The sub-graphs represent partial graphs of the graph of functional dependencies. Each sub-graph is associated
to a goal that replies to a particular event. For example, "To intercept a threat" is one of the possible goals to
be achieved by the patrol if the event "New contact on the radar" occurs. This goal is associated to a sub-
graph (a set of tasks and connectors) depicting the functional possible procedures the agents have to carry out
to achieve it.

4.5. The expected relevant events

The agents of the system have sometimes to reorganise themselves to achieve goals. The goals are generally
fulfilled by one agent or a group of agents. The agents take into account new events that can be interactively
provided by the designer during the simulation (for example the on-line creation of a new threat) coming
either from environment changes, or from messages between agents. A new event implies that the agents have
to cope with a new sub-graph. All the difficulty lies in the management of the new goals. Each event is
characterised by a degree of priority which allows the agent to select the most urgent to treat. The algorithm
concerned is developed in fig. 6. To model the system, the designer specifies the different events to which the
agents are sensitive. The designer has to specify the "event/goal" pairs.

Now, let us present our scenario to illustrate the methodology of SCALA and model the behaviour of the
designed multi-agent system.

4.6. An interception scenario

In the scenario, four aircraft fly as a division on a close-air support
mission. A division is composed of two sections, each containing two
aircraft. Close-air support missions involve substantial communication
and coordination to ensure the success of the mission. We are
interested to a high level of coordination, i.e. on the goal to achieve and
actions to perform. Command and control are provided by an airborne
radar plane (in the friend area) and a number of forward air controllers
(AC), friend forces on the enemy ground. We are following this
scenario over the steps of SCALA’s methodology.

The division’s pre-briefed goal is "Bomb Target 1". The aircraft take
off from the carrier and rendezvous at a pre-briefed location to join into
formation. The rendezvous is necessary to coordinate group flight
because we assume that only two planes (a section) can launch
simultaneously. According to the formalism defined in SCALA, this
can be modelled by the sub-graph (fig.1). The star (*) means that all
the sections of the group defined by the designer have to take off. This
implies no conditions on the number of aircraft involved in the mission
(it is specified via the agents definition) but only the (functional) way
they have to take off. This generic approach of specifying behaviour

CAP
*

Take off

Section
*

fig. 1: Sub-graph "CAP"

(* ≥ 2)
Guided flight

(*)
Enter combat

area

Bomb target

*

fig. 2: Sub-graph "Bomb Target"

Task X Task Y
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ensure the re-usability of the graphs. The second task "CAP" (Control Air Patrol) expresses, in the same way,
that all the planes have to join at a pre-briefed point.

While flying their route, the lead of the division checks in with the air controllers any changes in routing and
the permission to enter the combat area. Once the AC verifies the mission, visually acquires the planes, and
determines they can bomb the target without endangering friendly forces, the AC gives the final permission to
drop their ordnance. Then, they exit the area and fly back on their egress route. The constraints (//) and (* ≥ 2)
express that the task "Guided flight" has to be accomplished simultaneously by a group composed of at least
two aircraft. This task is monitored by the airborne radar plane. All the agents of the related group must
synchronously begin the task “Enter combat area”. Then, all the agents, who carry a bomb, have to drop it (not
necessarily at the same time). We do not have to precise on this graph that the last task is to return to the base
because it is the task by default: it is a "home state" automatically executed. The global plan is the
concatenation of these two sub-graphs (fig. 1 & fig. 2). In this step of the modelling, the designer has to define
the “event/goal” pairs: "Order to bomb the target / Bomb the target". We further expose a complete
scenario with new events occurring during the simulation.

The next step is to define the local behaviours, i.e. the different tasks.

4.7. Definition of the tasks

The tasks have some notable properties that we are describing here.

A set of methods

Each task is associated to a set of methods. A task is in fact a sub-goal that can be achieved by different
manners. For instance, several tactics lead to the same result, but their use is context-dependent and an agent
have to decide which of them apply according to its skills or to the availability of other agents in the case of a
team-tactics. (Remark: this functionality is directly available in JACK with the meta reasoning of the agents
based on sophisticated heuristics for the selection of the relevant plans).

Interruptible tasks

The tasks can be interruptible or not interruptible. The interruptible tasks have the capability to stop their
execution and then to resume it or to definitely abandon it.
For example, a task can be interrupted when an event implies the interruption of the current method (same
remark than below). In the related scenario, the "Guided Flight" task is interrupted to let the agents enter in
the combat area when they arrive close to this zone and when they had received the permission from the AC.
Furthermore, the execution of a task is submitted to constraints clustered in pre and post conditions.

Pre and Post conditions

Those notions are linked to the perception of the agent or its knowledge. The pre-conditions specify the
conditions to execute a task but also the way. In fact, several manners can exist to achieve a task. Those pre-
conditions can be assimilated to a filter for the choice of the relevant method.
The post-conditions describe the changes of the resources after the execution of the task. For example, if a
missile is launched, the number of missiles must decrease in the knowledge base of the concerned agent.
According to our scenario, the pre-conditions on the task "Enter combat area" are to get the permission from
the AC. For the task "Bomb the target", the planes have to wait for the permission and to be sure of the target
to bomb.

Number of agents

It is the necessary number of agents required to execute the task. This information is very important to initiate
cooperation between agents.
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Skills and level of specialisation

Here are defined the necessary skills and level of specialisation required to execute the task. These
characteristics also enable the cooperation between agents, while considered as complementary resources for
the system.

4.8. A recursive groups definition

The groups in SCALA are defined via the following way:
• The type of the group,
• The members (type: agent or group, and number),
• The roles composing the group,
• Group Goal: the current global goal of the group,
• The sub-groups: the groups inside the group,
• The meta group: the group which it belongs,
• The type of organisation,
• The type of cooperation

This notion of group enables the designer to create sophisticated mechanisms of cooperation between agents
belonging to a group and even between groups. An example of teams modelling for tactical aircraft simulation
can be found in [TID 98].
In our scenario, the division is composed of two sections. And recursively, the section is composed of two
aircraft. The organisation is hierarchical and the cooperation is based on delegation. One can assume the
leaders of the two groups take joint decision by consulting together, the organisation of Group 1 then becomes
a community, but the cooperation mechanism makes essentially intervene the leaders.

4.9. The definition of the agents

In SCALA, a generic structure of agents is defined and specialised by the designer for a given application. It is
decomposed in two levels:
The agent itself:
• Skills and the relevant level of specialisation,
• Resources: physical resources of the agent,
• Events: to which the agent is sensitive,
• Current goal.

The agent in its group:
• Group(s): the group(s) it belongs,
• Current role(s): the role(s) it holds in each group(s),
• Possible role(s): the other role(s) it can eventually take in each group,
• Communication Protocol: the protocols of cooperation with the other members of the group.

• name: Group2,
• type: Section,
• members: Two Aircraft,
• roles: 1 Leader, 1 Wingman,
• Group Goal: To destroy the bandit
• Sub-groups: none,
• Meta group: Group 1,
• Organisation: Hierarchical,
• Cooperation: Delegation

fig. 3: A recursive groups definition

• name: Group1,
• type: Division,
• members: 2 Sections,
• roles: 1 escort, 1 Bomber,
• Sub-groups: 2 Group2,
• Group goal: To destroy the bandit
• Meta group: none,
• Organisation: Hierarchical,
• Cooperation: Delegation
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4.10. The social organisations and the communication protocols

The organisations define the internal relations inside the groups. Given an organisation, the agents can have
different roles depending on the situation. These roles can be dynamically assigned. For the moment, we
distinguish two types of organisations: hierarchical and community. The organisation can also evolve (under
certain conditions) during the simulation depending of the current topology of the graph and of the predefined
mechanisms (a hierarchical structure is fit to treat a task naturally decomposed into sub-tasks).
The communication protocols depend on the type of the organisations. For instance, in a hierarchical
organisation, the agent which holds a manager role can delegate a task or a set of tasks to another agent or to a
group via a simple point-to-point message sending. Whereas in a community, a network is built between
several agents to dynamically exchange their tasks or collaborate for their execution. An example of such
mechanism is the Contract Net protocol, which have been implemented in SCALA.

4.11. The simulation process "event to plans"

Each new relevant event that occurs during the
simulation triggers a new instance of the related
sub-graphs. The sub-graphs tasks are dynamically
distributed to some agents according to their skills,
roles and resources. The distribution process (fig.
4) depends on the organisation type of the group to
which belong the sensitive agents. The sub-graphs
(a multi-agent plan) are split into mono agent plans
(lists of partially ordered tasks) as a network of
dependencies between the activities of agents.
Those dependencies are a representation of the
constraints of the graph. Thus, the agents
coordinate their activities while taking into account
these dependencies and environment changes.

The SCALA Grapher

Numerous applications can be modelled. To define these applications, we developed a tool to easily design the
graphs of dependencies that are associated to an event name, and also build a library of reusable behaviours
(the Event/goals pairs). SCALA automatically interprets them and generate the code of the simulation. Only
the real contents of the tasks have to be implemented for each application, the mechanisms providing the
strategies of cooperation lie on the information entered by the designer through the steps of the methodology.
In SCALA, the reasoning part (including coordination between agents) is entirely independent of the basic
behaviours.

The activities' scheduler

Another tool to monitor the mission is a scheduler diagram that represents the activities of the agents. On this
diagram can be seen the multi-agent behaviour: the evolution of the simulation, the coordination between
agents, the arrival of new events.

5. Perspectives

This first approach in SCALA encounters certain limits: the lack of temporal aspects necessary to meet the
simulation requirements. Those limits could be critical factors. In addition, we are interested to explore
reactive planning in order to manage the environment dynamic (arrival of new goals or events). Consequently,
SCALA is extended to take into account time constraints when new events occur. It is also a critical factor
when agents have to hold temporal objectives. Furthermore, it is obvious that the behaviour of a group of
agent will depend on the available time they have to react.

Agent 4

SubGraph

Event

Plan 1

Plan 2

Plan 3

Plan 4

Distribution of the
graph over the agents

Agent 1

Agent 2

Agent 3

fig.4: Network of dependencies
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One of the domains of application of SCALA is tactical aircraft simulation. This domain is characterised by a
highly dynamic (unpredictable) and uncertain environment, that implies for the agents to plan reactively when
new events occur and sometimes to reorganise themselves. But, the agents have also to respect time
constraints in the execution of their tasks and so, the reorganisation and coordination of their activities have to
take into account this constraints. Thus the work in progress attempts to extend the graph of dependencies by
the notion of time in the tasks, and time constraints on the goals of the agents. These constraints can be
assimilated to temporal objectives that are critical factors to achieve successfully the mission. Our approach is
real-time execution driven.

6. Conclusion

Through the experience of the use of JACK and the development of SCALA, we have seen that the agent-
oriented programming fits to the development of complex system evolving in dynamic environments. The
high level of abstraction of the agent approach makes easier the modelling of complex systems, especially the
modelling of distributed applications, where the entities (the agents) have to perform tasks autonomously and
to interact with others. The designer can focus on sophisticated mechanisms such as coordination and
cooperation between the components of the system without getting tangled up in the development of
communications for messages sending, or other low-level developments such as multi-threads, etc.

Furthermore this approach allows to easily separating reasoning from actions, and so improves the reusability
of the implemented behaviours. In the case of aerial missions simulations, the advantage of such programming
is to make reasoning and physical models completely independent. It makes simpler the addition of new
behaviours and introduces flexibility in the system. New events can easily be taken into account and managed
by the system. These aspects are very interesting for designing systems submerged in a real world (in
simulation or in reality), when flexibility, reactivity and adaptation are crucial (responses of new events).
Interactivity with human users of the system is also facilitated.

SCALA project proposes a functional approach to design complex systems and provides a tool to rapidly
setting up simulations. The designer has to model the global behaviour of the system as a graph supporting
functional constraints. The connectors represented in the graph of dependencies of SCALA enable an easier
coordination and organisation of the agents driven by their activities. Another important contribution in the
design of complex systems is the fact that different behaviours can be easily obtained by only modifying the
links and connectors in the graph of dependencies of SCALA and simulated without new compilations. New
behaviours are thus specified at a high-level of modelling and then directly interpreted by SCALA to generate
the code of the related simulation.

An interesting application of our work is the domain of tactical aircraft simulation, to rapidly prototype
tactical behaviours of well-known aircraft or new ones.

Acknowledgements

The author would like to thank Frédéric MARC who works on the related project in the frameworks on his
PhD. on Computer Science at LIPN (Laboratory of Computer Science of PARIS 13) and Dassault-Aviation.



5-13

References

[BRIOT 01] BRIOT J.-P., DEMAZEAU Y., "Principes et architectures des systèmes multi-agent", Edited by
Hermes, pp. 17-70, 2001.

[HOW 01] HOWDEN N., RONNQUIST R., HODGSON A. and LUCAS A., "JACK Intelligent AgentsTM

Summary of an Agent Infrastructure", 5th Conference on Autonomous Agent, 2001.

[JAR 01] JARVIS J., MAISANO P, "Jack Intelligent AgentsTM User Guide", Release 3.1, Agent Oriented
Software Pty. Ltd, Mars 2001.

[JEN 98] JENNINGS N. R.,WOOLDRIDGE M., SYCARA K., "A roadmap of agent research and
development", Int. Journal of Autonomous Agents and Multi-Agent Systems, vol. 1, n°1, pp. 7-38, 1998.

[RAO 95] RAO A. S., GEORGEFF M. P., "Modeling rational agents within a BDI architecture", In J. Allen,
R. Fikes, and E. Sandewall, editors, Proceedings of the Second International Conference on Principles of
Knowledge Representation and Reasoning, pp. 473-484. Morgan Kaufman Publishers, San Mateo, 1991.

[TID 98] TIDHAR G., HEINZE C., SELVESTREL M., "Flying Together: Modelling Air Mission Teams",
Applied intelligence, vol. 8, pp. 195-218, 1998.

[WOO 95] WOOLDRIDGE M., JENNINGS N. R., "Intelligent Agents: Theory and practise", The Knowledge
Engineering Review, 10(2):115-152, 1995.

[WOO 99] WOOLDRIDGE M., "Intelligent Agents", In Multiagent System: A Modern Approach to
Distributed Artificial Intelligence, Edited by WEISS G., pp. 27-77, 1999.



This page has been deliberately left blank

Page intentionnellement blanche



6-1

Reactive Planning in Air Combat Simulation

Irène Degirmenciyan-Cartault
Dassault Aviation,  78, quai Marcel Dassault Cedex 300 92552 St Cloud Cedex France

irene.degirmenciyan@dassault-aviation.fr

Abstract: In real-world environments such in air combat missions the agents continuously receive perceptual
inputs from the environment that is highly dynamic (unpredictable) and uncertain. The aircraft often have to
reorganise themselves and to make decisions under time constraints. Two modes of control are thus necessary:
planning and reaction. By planning we mean both building a course of action before execution, and reaction as
dynamic replanning which interleaves planning and execution. Furthermore, in air combat simulation the
plans adopted by the agents in response to external events are known in advance and are not generated by the
agents as in other domains. To be reactive, the agents have to choose dynamically the appropriate plans and to
coordinate their actions. We present how we take into account new events thanks to dynamic allocation of
tasks by means of the graphs of dependencies between agents’ activities. Our current work aims to extend this
model of tasks and goals by integrating time notions in the selection of action plans and coordinate
mechanisms. Operations on plans under time constraints are also examined in order to enable the simultaneous
management of several events.

1 Introduction

In real-world environments such as air combat missions the agents continuously receive perceptual inputs
from the environment that is highly dynamic (unpredictable) and uncertain. The aircraft often have to
reorganise themselves and to take decisions under time constraints. Two modes of control are thus necessary:
planning and reaction. By planning we will understand both building a course of action before execution, and
reaction as dynamic replanning which interleaves planning and execution. Furthermore, in air combat
simulation the plans adopted by the agents in response to external events are known in advance and are not
generated by the agents as in other domains. To be reactive, the agents have to choose dynamically the
appropriate plans and to coordinate their actions.

The purpose of this paper is to point out the difficulties to coordinate the behaviour of several agents in
applications such as air combat simulation. A host of approaches to dealing with reactive planning or multi-
agent planning exists, but in the context we are interested, we should simultaneously cope with these two
aspects in order to treat the coordination of the agents' activities under time constraints facing to the arrival of
new events.

After having outlined the interest of using intelligent agents in the domain of warfare simulations (section 2)
and characterised the air combat mission and the requirements in terms of modelling coordination and reactive
planning in the distributed context of air combat simulation (section 3). We then focus on reactive and real-
time planning (section 4 and 5) and multi-agent planning (section 6). In next sections, we present the work led
at Dassault Aviation, and particularly the reactive planning process implemented in the SCALA environment
(Cooperative System of Software Autonomous Agent) through simple air missions scenarios. We show how
SCALA deals with new events by dynamic allocation of tasks to the agents via the use of graphs of
dependencies between their activities, and we also define plan operators enabling a more pre-emptive time
management.

2 Thinking with agents

Intelligent software agents have been successfully used for modelling human decision making. In particular,
intelligent agents have already shown their suitability for operational analysis of aerial warfare simulators

Paper presented at the RTO AVT Course on “Intelligent Systems for Aeronautics”,
held in Rhode-Saint-Genèse, Belgium, 13-17 May 2002, and published in RTO-EN-022.
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[STE 96], or man-in-loop simulation as computer generated forces [ILR 97]. Some studies are going so far as
to the concept of interchanging humans and agents [HEI 01], or to simulating human performance while
taking into account factors such as experience, attention, workload and stress [LLO 97].
Thus, the use of intelligent agents focused on the modelling of human reasoning. The BDI model of rational
agency have provided the basic paradigm of much of the research in this domain [RAO 95]. The power of this
model is the ability to describe folk-psychological notions of belief, desire and intention, which helps to
describe some aspects human decision making. Furthermore, the appropriate level of abstraction of this model
makes it well understood by the analysts and decision makers who are exactly their users. In particular,
intelligent agents have widely proven their utility in the modelling of tactical decision process of pilots and
fighter-controllers by easily involving the operational air force personnel in the design and development of
these kinds of simulations [HEI 98].

3 Air combat mission characteristics

We assume that aircraft and pilots are modelled by intelligent agents. Modelling an air combat mission
implies the following points:

• The agents continuously receive perceptual inputs from the environment that constitutes their beliefs of
the world (establishment of the situation awareness).

• The environment is highly dynamic (unpredictable) and uncertain, and the aircraft often have to
reorganise themselves (dissolution and formation of new teams). For example, reorganisation is
performed when a failure occurs or when an aircraft is destroyed (the others have to reconfigure
themselves and reassign their roles).

• The agents have to take decisions under time constraints.

• The plans adopted by the agents in response to external events or to accomplish goals are supplied in
advance (generally at the briefing before the mission) and are not generated by the agents as in other
domains. The agents have to select an applicable plan in their directory of plans under several conditions
(this choice is context dependent).

• The aircraft in teams (sections, divisions, packages) have joint goals to achieve (intercept a bandit), and
joint plans (team tactics).

• Each member of a team may respect the constraints imposed by the type of organisational structure, and
its role within it. The functional responsibilities adopted by the members depend on the goal assigned to
the team. A same aircraft can be leader (organisational role) and escorter (functional role).

In a such context, the problems addressed are the coordination and the synchronisation of agents activities
under time constraints. So, we will firstly bring reactive and real-time planning to our attention, and secondly,
we will focus on multi-agent planning.

4 Reactive planning

As we saw below, air combat simulation involves coordination, and reactive planning in a multi-agent context.
Let us compare conventional planners and reactive planners [ASH 00]:

Conventional planners are characterised by their ability to establish a deterministic sequence of actions for
getting from a given initial state to a given goal state. They successfully can be applied to problems that are
completely defined in a formal way. The original conventional planners attempt to find a path to reach the
goal state; they did not really plan, and can also be considered as search algorithms. They do not exhibit
recovery notions and can fail if some uncertainties exist in the initial hypothesis or whether the current state of
world changes during the planning process.
By contrast, reactive planners construct plans which are able to respond to a large number of world states
while working with some type of monitoring of plan execution that keeps track of the world states at all times
to respond accordingly.
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The notions of reaction and reactive planning have to be jointly considered. Reactive planning takes place
before plan execution, although reaction takes place at execution time. These two types of control have to
work together to anticipate and avoid critical situations (pro-active behaviour).

A very important notion in reactive planning is the notion of contingency: "Contingency is any state of the
world entered by the executing agent while following a plan; which state should not have occurred as a result
of executing the plan up to that point" [ASH 00]. The uncertainty characteristic of real-world domains
involves the apparition of contingencies during the plan execution. D.W. Ash and V.G. Dabija classified
contingencies in three types related to the limited resources that an agent can use, and according to the action
taken at planning time to prepare for their occurrence at execution time:

• Contingencies for which the planner builds complete conditional branches, from the contingency state to
the goal state, in the main plan (contingencies with high likelihood of occurrence and requiring elaborate
plans to treat them).

• Contingencies for which the agent prepares reactive responses; these may be combined into reactive plans
which are integrated in the complete plan (to stabilise the situation in a short time), after what a more
extensive planning can be necessary at execution time.

• Contingencies ignored by the agent at planning time, either their treatments can be left for dynamic
replanning during execution (contingencies with low likelihood of occurrence, and without short-term
disastrous consequences), because they are less important than the below categories and do not require
replanning at all, and in last case, when the agent can’t take any action to solve the problem.

It seems obvious that an agent, with limited resources, considered in a real world cannot handle all of the
contingencies at planning time (concept of "universal plan"). Fortunately, many of the contingencies can be
ignored at planning time (for example those which have a low likelihood of occurrence). The problem for the
agent is thus to decide which contingencies require reactive responses and those which can be ignored at
planning time.

Two control modes are thus necessary: planning and reaction [HAY 93]. By planning we mean both building
a course of action before execution, and dynamic replanning which interleave planning and execution. The
most important disadvantage of the planning approach is the inflexibility of the planned behaviour. The agent
is constrained to act according to the states of the world strictly specified in the plan and leading it straight to
his goal failing at the first not planned disrupting event. The reactive approach is more flexible: the agent acts
according to a set of perception-action rules which allow it to respond to a larger set of run-times conditions in
short-time. Thus, he does not build a complete solution to the final goal, but can quickly stabilise the situation.
Therefore, this model of control provides a less carefully in-depth analysis of the current state and the related
action consequences.

These two models complement each other, and have to be implemented together, that is what is called reactive
planning. In real-world dynamic environments, where short-term responses are necessary, agents need
frameworks for action selection. Such frameworks, detailed in [ASH 00], ensure the choice of the best set of
events (contingencies) and reactions to be stored at planning time before execution, according to the
perception capabilities (sensors), and the reaction execution mechanisms of the agent. Furthermore, planning
and reaction techniques can be used to plan the agent’s sensing activities.

5 Real-time planning

In mission-critical system it is imperative to ensure that the proposed solutions have a correct temporal
behaviour before they are deployed, and that these solutions have been elaborated under time constraints. The
Maruti operating system [LEV 89] [LEV 90] provides tools to build verifiable real-time system services
including hard real-time, distributed operation, and fault-tolerance, which are crucial in mission-critical
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systems. In this work, the time-driven approach is used, where the control of the resources is done by the
operating system scheduler based on the time elapsed in an operation and on absolute time value. This work
has shown that a time-driven design is simpler and more easily verifiable.
This kind of system can support the development of dynamic reaction system, which may guarantee
performance characteristics, suitable for mission-critical applications.

An example of such a time-driven system applied to aircraft simulation is the Cooperative Intelligent Real-
Time Control Architecture: CIRCA.
CIRCA [MUS 93] is an architecture that aims at monitoring environment changes and agent knowledge
modifications in order to pre-empt possible failures in the system. It blends the real-time and reasoning
requirements by executing them on two separate components [ASH 00]:

• AIS: the artificial intelligence subsystem, which performs high-level reasoning about tasks and develops
low-level control plans.

• RTS: the real-time subsystem, which ensures a predictable behaviour for the guaranteed execution of
these (mission-critical) control plans.

A Control plan is a cyclic schedule of simple test-action pairs (TAP). A TAP contains temporal data such as
worst-case timing data on: how long it takes to test the preconditions (TEST-TIME), and how long to execute
actions (ACTION-TIME). In addition, the TAP is associated with a maximum TAP period (assigned during
planning), which represents the longest time interval allowed between invocations of the TAP that can still
guarantee to avoid failure.

The automatically derived reactive control plan is guaranteed to meet the domain's deadlines and achieve the
system's goals. The architecture makes a fundamental distinction between activities with respect to the types
of goals they are interested to achieve:

• Control-level goals, which are guaranteed to meet domain deadlines, via the predictable execution of the
RTS. They are frequently related to system safety, and correspond to hard deadlines derived from physical
relationships between agents, and the environment (i.e. collision avoidance must be achieved before their
deadlines). The priority is always given to those goals.

• Task-level goals, which are executed in a less predictable manner, are achieved on a best-effort basis. The
system tries to achieve them when possible, but if time pressure or other resource limitations make this
impossible, the system is still considered successful. The deadlines are negotiable by the agents.

CIRCA operates by simultaneously planning new control plans in the AIS that cooperates with the TAP
scheduler, while the RTS executes existing Control plans. The RTS can also influence the AIS by giving it
feedback about changes in the world. In that case, the AIS has to replan a set of actions and a control plan.

Distributed versions of CIRCA have been developed [MUS 98] [KRE 01]. The pre-emption process is
distributed and coordinated. In fact, each agent has the possibility to avoid the possible failure of another
agent: if an agent A determines that an agent B is tracked by a missile, it will tell agent B to activate its
electronic counter-measures to defeat the missile. This means that each agent has special TAPs to take care of
event that could arise to others such as the Detection of a missile.

Other works are focused on the process of planning [ATK 96]. Those works aims at reducing the planning
time by typing the different states that could occur in the environment. Actually, they try to determine in
which case the system has to plan a complete control plan or execute an existing Control plan. The main topic
of this work is the time that the system has to react to the events. If the transition to failure comes “fast”, then
it executes an existing plan. Otherwise, if the transition is “slow”, it will plan a new Control plan. The time
allocated to the planning process dependens on the time before the transition occurs.
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CIRCA essentially deals with the safety of the system and not with the achievement of high-level goals. The
safety is ensured thanks to a real-time monitoring of the environment, where any changes implies the planning
of a new control plan with real-time constraints.

6 Multi-agent planning

An important aspect encountered in Air-Combat simulation is the need for coordinated behaviour modelling.
The coordination issue is central in multi-agent systems since the agents that constitute a multi-agent system
have to coordinate their activities. A way to enhance agents’ cooperation is to give them capabilities that
enable to forecast and plan cooperatively their actions. Several works deal with multi-agent planning as a
coordination strategy [GEO 83] [DUR 88]. Generally, these works address the post planning. First, the agents
generate individual plans and then attempt to merge them in a global plan (the multi-agent plan) where the
execution of the local plans is compatible. This post planning process lies on the detection of sub-goals and
conflicting situations in order to remove them.

One of the major properties of multi-agent planning is the distribution that distinguishes it from traditional
(centralised) planning. Although this notion is inherent to multi-agent systems, it becomes ambiguous when it
qualifies planning. Indeed, we have to question on what is really distributed. Distribution may concern either
the planning process itself or the resulting plans (or even both) [DUR 99]. So, different types of multi-agent
planning can be considered [ELF 01]:

Centralised planning and distributed plans

The planning process is centralised in a specific agent (the coordinator) and the resulting plan is distributed
over the agents. The plan is partially ordered and the parallel actions can be concurrently executed by several
agents. The coordinator can be designated after a negotiation cycle between the agents. It is the case of the Air
Traffic Control application [CAM 83] where the aim of the agents is to build coherent flying plans.
This type of planning makes conflict easy to solve and the convergence to a global solution, but it suffers from
the traditional disadvantages of centralised control, such as the lack of robustness or the communication
bottleneck.

Besides, this approach is not very reactive. Every occurring problem during the execution of a plan has to be
passed to the coordinator who may decide to activate some replanning operations. So, the coordinator should
maintain a continuously updated representation of execution states in order to solve the conflicts.

Distributed planning and centralised plan

We assume here that the problem to be solved (i.e. the tasks to be achieved) is decomposed in sub-tasks and
each of them is planned by an agent. The agents have to interact with each other to synchronise and merge the
local plans in order to constitute a unique multi-agent plan.

This approach is also costly in communications and the achievement of a global solution is not guarantied.

Distributed planning and distributed plans

This approach of distributed planning is undoubtedly the most challenging because it does not assume that
global plan exists somewhere in the system, and yet the distributed plans are compatible, i.e. their executions
do not cause conflicts between agents [DUR 99].

The agents plan their actions and execute them concurrently and autonomously in a shared environment.
Events due to the concurrency of actions can occur during execution or plan generation. So, this type of
planning requires rich and powerful formalisms that can express parallelism, concurrency, hierarchical goals,
etc.
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Incremental planning is one of the approaches proposed in the domain. It is assumed that a set of plans is
already coherent and that the planning consists in integrating a new plan to be coordinated with others.
In [VMA 92], a taxonomy of the relations between plans is developed and a communication framework
allows plan exchanges and negotiations between agents to take into account these relations when a new plan is
inserted. This work concerns the simultaneous coordination of two agents.

El Fallah-Seghrouchni and S. Haddad in [ELF 96a] proposes a distributed planning algorithm that
simultaneously coordinate several agents. The formal model is based on the partial order of the actions. The
plans’ coordination consists of adding synchronisation links between actions. The algorithm solves the
positive interactions by using the pre and post-conditions, and the negative interactions by synchronising the
actions. The model guaranties the feasibility of the multi-agent plan for all total order whatever is the total
order extending the partial order. This formalism of plan representation is extended in [ELF 95] [ELF 96b] to
enable the algorithm to solve more complex situations. It lies on an extension of the Petri-net formalism to the
Recursive Petri-net formalism. It includes the characteristics of recursivity, dynamism, and interleaving of
planning and execution. It allows the representation and the reasoning on simultaneous actions and continuous
processes (concurrent actions, choice between alternatives, synchronisation, etc.).
This planning model allows the representation of abstract action during the generation of plans. The
refinement of this type of action is dynamic (during the execution) and context dependent which allows the
dynamic choice of the manner of executing an action. Furthermore, this model guaranties the consistency of
the generated plans with the help of efficient algorithms.

A more detailed presentation of multi-agent planning is beyond the scope of this paper. The interested reader
could refer to [ELF 01] and [DUR 99].

Let us now present the studies carried out at Dassault Aviation that attempts to introduce reactivity and time
constraints in the coordination of the activities of agents. The application considered is the air combat
simulation. For the moment, the aim of our work does not go so far as to integrate real-time constraints in the
reorganisation or planning process, but we are attempting to introduce time constraints in the choice of plans
and in the choice of tasks assignment to agents, and further, in the goals management too, i.e. how the goals
have to be taken into account to satisfy the temporal objectives fixed in order to successfully accomplish the
mission.

In the next sections, we are describing the reactive planning process implemented in the SCALA environment
(Cooperative System of Software Autonomous Agent) through air missions’ scenarios. Firstly, we are
demonstrating how SCALA handles new events by dynamically assigning the necessary tasks that treat them,
and secondly we are defining operators on plans enabling a more pre-emptive time constrained management.

7 The reactive planning process in SCALA

7.1 A dynamic assignment of tasks

In SCALA, the designer models the behaviour of the multi-agent system at a high level of abstraction via a
graph of dependencies. This graph is constituted by one or more distinct graphs composed of tasks or basic
behaviours that have to be accomplished by the agents of the system, and the constraints between them. These
are defined by links or connectors expressing notions of synchronism (on the beginning or on the end of
several tasks), exclusion (the execution of one task inhibits others’), refinement (several methods can be
invoked to execute a same task) and abstraction (a task is composed of others). Another type of constraint is
about the number of agents having to perform a given task. At this stage, tasks are not yet allocated to the
agents.

The definition of the graph of dependencies provides the knowledge required for managing the cooperation
between the agents. The need of collaboration for the execution of some tasks implies dynamic planning
during simulation through specified cooperation mechanisms. This on-line process interleaves planning and
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execution just like in reactive planning. For example, to fire a missile, the designation of the target can be
done by an aircraft, and the fire of the missile by another aircraft. Depending on the available resources, the
same aircraft also can accomplish these two actions. This coordination can be either implicit, the agents have
joint goals and each of them attempt to accomplish the relevant tasks, or explicit, for example, an agent can
ask another agents to help him to accomplish a task because this task requires the synchronisation of their
actions.

The assignment of the tasks to the agents is thus made dynamically according to the current situation and the
available resources (agents are also assimilated to resources through their skills). So, we give the agents a
certain freedom of action that gets more reactivity for the system and allows to avoid some failures such as the
use of non-available resources.

7.2 The simulation of an interception mission

In this section, we are describing an interception scenario. Let us assume that an enemy wants to ingress our
territory with a "Bomb target" goal (fig. 1).
The mission of our aircraft is to protect the territory by intercepting the threats. We assume that a four aircraft
division is on alert on a CAP waiting for events such as "Contact on the radar". A possible sub-graph
associated to this event is modelled in fig. 2. The first task that responds to this event is "Guided flight" to
achieve the interception. This task has to be executed by at least two agents of the entire division (* ≥ 2). The
"Guided Flight" is an interruptible task (grey colour), which implies it can be abandoned as soon as the next
task "Acquisition" is possible. When the agents have obtained the permission to engage the bandit (pre
condition of "Engagement" satisfied), the best-placed agent does it.
SCALA enables the on-line addition of new agents (arrival of a new bandit in the theatre). Let us assume now
that the designer creates a new bandit following the same type of graph than the first bandit before this one
had been treated. The reception of this new event by the Division implies it has now two bandits to treat. A
new goal associated with a new instance of the same graph is generated.

In our domain, plans are predefined, so we do not have to generate new plans to respond simultaneously to
several events, but only to manage their combination. In the next section, some of our operators on plans will
be defined.

We favour that goals must be treated concurrently if the agents have enough resources. The agents are
considered as resources (skills and role), and physical resources of the agents, such as missiles are also taken
into account. In the other case, the priority of urgency of the goals has to be deal with. The complete heuristic
of goals' management is explained beside (fig. 3).

Engagement

Shoot

Acquisition

(* ≥ 2)

Guided flight

fig. 2: Interception Sub-Graph
fig. 1: Sub-graph "Bomb Target"

(* (*≥ 2)
Guided flight

(*)

Enter
combat area

Bomb target

*
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In our scenario, we assume the division has enough resources
to treat simultaneously the two threats. The division thus split
into two groups: Section1 assigned to the first target, Section2
assigned to the second target. This decision is made by the
leader of the division according to the structural organisation
specified by the designer.
The difficulty here is to re-organise the aircraft in the best
way to take into account the new goal. This reorganisation
depends on many parameters (context, physical and temporal
resources). The problem is to extract the best required criteria
to ensure that each new group (reconfiguration inside the
groups is possible) has the minimal resources to achieve its
assigned goal. This re-organisation is decisive for the
continuation of the mission and requires a time-constrained
pre-planning algorithm on a high-level of decision.

Then, Bandit2 ripostes (he replies also to an event such as “Contact on the radar” by a sub-graph
“Counterattack”) and we assume to simplify the scenario that he is immediately shot by Section2. This
Section examines if there is some bandits left. That is why they consider Bandit1 as their new target and
decide to follow him. The two sections have now the same goal. Finally, Section1 shoots Bandit1, and they
can return home because there are no more bandits in the friend territory. The mission is completed.

This scenario is depicted in fig. 4, 5 and 6 on a visualisation tool enabling to situate the agents and show their
behaviour. SCALA provides other tools, independent of the application, to analyse the behaviour of the
system (dynamic information on the states of the agents and on their activities).

SCALA has been developed on top of the JACK agent-oriented language [HOW 01], itself built on top of
Java.

Priority(goal G1, goal G2)
Begin

If enough Resources
Treat G2 and G1 concurrently;

End If
If  not enough Resources

If P2 > P1
Treat G2 then G1;

End If
If P2 ≤ P1

Treat G1 then G2;
End If

End If
End

fig. 3: Goals management algorithm

(1) First threat
detection

(4) Reorganisation
and division split

fig. 4: An air combat scenario developed in SCALA (1)

(3) Second threat
detection

(2) Guided flight
to the first threat



6-9

fig. 6: An air combat scenario developed in SCALA (3)

threat1
destroyed

(7) Riposte

(8) Section1 has shot
threat1, no threat left,

Section1 returns home.

(9) No threat left,
Section2 returns

home.

threat2
destroyed

(5) Riposte(6) Section2 has
destroyed threat2
and get threat1 as

new target.

fig. 5: An air combat scenario developed in SCALA (2)
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Several works have been developed in multi-agent simulations like SWARMM [HEI 98] [MIL 96] based on
dMARS [DIN 97] or TacAir-Soar [ROS 94].

SWARMM is a detailed multi-agent simulation of fighter combat designed for analysing the impact of
upgrades to modifications and development of the tactical employment of aircraft. It is capable of simulating
the physics of air missions and the pilot’s reasoning process involved in such missions. In SWARMM, the
behaviour of the agents is based on the choice of relevant pre-specified plans supported by the meta-level
reasoning of the agent-oriented software dMARS. So, the process of replanning is entirely based on the direct
choice of behaviours through predefined plans, i.e. all the behaviours, even team tactics are implemented in
specific plans [TID 98]. The essential difference between the graph of dependencies of SCALA and
SWARMM plans, is that the choice of behaviours in SCALA is less determined, or more exactly let at the last
moment. The graphs are a kind of factorisation of plans, and represent a class of behaviours responding to a
same goal. It is the coordination mechanisms that instantiate at the last moment the graph, which becomes a
plan. This approach allows making lighter the definition of the plans and their pre-conditions. In SCALA, a
first level choice is made for the relevant graph, and a second level choice is made by the agents themselves
through the heuristics of coordination.

The TacAir-Soar system also combines reactive and goal-driven reasoning. It contains a large set of rules that
fire as soon as their conditions are met, without search or conflict resolution. The choice of the actions to be
performed entirely lies on the interpretation of the environment observations [JON 94]. Another part of this
research effort deals with a deliberative planning component that separate planning from normal execution by
projecting future possible states and searching through them which courses of action are appropriate. The
challenge of this research is to integrate deliberative planning with dynamic reasoning.

7.3 Time constraints

Our current work in collaboration with the LIPN (Laboratory of Computer Science of Paris 13) consists to
extend the SCALA framework with temporal aspects in order to satisfy time constraints at the execution level.
Let us now introducing the expected improvements of SCALA.

A part of our current research effort is to equip the graph of dependencies with the notion of time. The graph
or more precisely the sub-graphs can be constrained in terms of temporal objectives. In fact, the global time
constraint on a graph is the resultant of time constraints on its tasks. The main idea is that time constraints can
be added to the graph, giving a limited duration of the plan execution. This notion is crucial in the context of a
real-time environment where the execution time allocated to agents to accomplish tasks is critical. Our
approach is real-time execution driven.

Time constraints are defined as intervals of time to be associated with the tasks as in [VMA 92]. We place our
work in the framework of real-time execution that is to say that the agents have temporal objectives on the
execution of their tasks. We attempt to develop an anytime approach for task execution such as the "contract
algorithms" [ZIL 96]. We think that temporal objectives should be an important criteria in the process of
planning because the behaviour of a group of agents depends on the time it has to react. So, the available time
must be considered as a resource and the choice of the relevant graph must take into account both physical and
temporal resources.

7.4 Operations on plans

The choice of the relevant operations is time dependant. We take the hypothesis that we will always try to
treat all the goals concurrently if there are enough resources in the system. The following section is devoted to
describe the operators on plans and finally depicting several behaviours.
Before choosing what type of operation an agent is allowed to do, he verifies if he can maintain the global
goal. In fact, an agent can have different behaviours: to keep his current plan and to cope with the new
allocated tasks or to distribute his current plan (i.e. set of tasks) over the other agents. In the last case, we
consider that the agent does not maintain the global goal himself but this goal is maintained by the others. In
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an extreme case, the agent cannot maintain the global goal, i.e. he cannot keep his initial set of tasks and
simultaneously manage the new tasks.

Global goal is maintained

We have developed several operators to manipulate the plans: concatenation, parallelisation, and insertion
(merging). These operators are invoked when the global goal is maintained:

• Concatenation: This operator sequences two plans. The interest of a simple concatenation is limited. In
fact, it would be interested, in a general manner, to re-examine the two plans, by adding or deleting tasks
such as redundant tasks. With such an operator, the dependencies are not updated.

• Parallelisation: The two plans are performed concurrently. To use this operator, possible conflicts about
resources have to be checked. In this case, the dependencies are not updated because they do not interfere
with the global goal. So, no updating with other agents is necessary.

• Insertion: The insertion of plan consists in adding a new set of tasks into the current plan. This implies an
updating of the dependencies with the other agents. In fact, even if the global goal is not changed in terms
of objectives, the constraints on those objectives (such as the delays of execution) could be modified.

Global goal is not maintained

When the global goal is not maintained, the agent has two possible behaviours. Actually, its behaviour
depends if it evolves alone or with others. In the first case, if it cannot cope with the new goal, also it removes
it and starts again from a home state. But in the second case, it distributes its current set of tasks over the other
agents of its group.

7.5 Some examples of behaviours

The presented scenario involves two "Friend" planes (Friend1 and Friend2) composing a patrol and firstly, a
single bandit B1. The threat is following a flight plan and the patrol has a goal that is "To intercept the threat".
As in the first scenario, the patrol fulfils a classic plan to intercept this menace. The patrol succeeded when the
threat is destroyed. In this scenario, we create a new bandit B2 following a flight plan too. This involves the
arrival of a new goal for the patrol that takes it into account.
Several alternatives should be applicable to cope with the arrival of a new event (fig. 7):

1. To keep the entire patrol and to insert the goal if its priority is higher than the current one (the insertion
operator is used)

2. To keep the entire patrol and to concatenate the goal if its priority is lower or equivalent than the current
one (the concatenation operator is used)

3. To keep entire the patrol and to abandon the goal an to start again from a home state if there is no
available resources or if the friends are outnumbered (the goal is not maintained)

4. To split the patrol and to simultaneously treat the two bandits if there are enough available resources to
treat them concurrently (the parallelism operator is used).

Actually, it is obvious that treating the two goals concurrently takes less time than sequentially. But this point
could also be tactical since a patrol is generally stronger than an isolated aircraft. As a consequence, if there is
enough available time for the patrol to achieve sequentially the goals, it could sometimes be better than
splitting it. We assume that those operational aspects are under the responsibility of the designer and he has to
specify them in the graph of dependencies.

Work in progress tackles the issue of validation of the generated plans after the operations. Our approach is
based on timed automaton. They present the advantages to model some of our connectors as the refinement
and the abstraction [ALU 94] [BER 97] based on different semantics of time, considering the action as
instantaneous or with duration. In this approach, the multi-agent plan is modelled as a synchronised network
of timed automata where each agent plan as a timed automaton. The main interest is to control plans execution
while taking into account the action duration and the arrival of new events.
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8 Conclusion

In real-world environments such as air combat mission the agents continuously receive perceptual inputs from
the environment that is highly dynamic (unpredictable) and uncertain. The aircraft often have to reorganise
themselves and to take decisions under time constraints. In this paper we focused on the multi-agent
technology that provides an interesting framework to design human-like behaviours and to model collective
behaviours and also on reactive planning that is appropriated to deal with the related domain which requires
both reactive and pro-active behaviours.

The SCALA project based on the multi-agent paradigm proposes a functional approach to design complex
systems and provides tools to rapidly setting up simulations. The designer is supported by tools enabling the
modelling of high-level behaviours through the graphs of dependencies that contain the necessary information
to coordinate agents' activities. Indeed in air combat simulations the plans adopted by the agents in response to
external events are known a priori and are not generated by the agents as in other domains, but the agents
have to dynamically choose the relevant plans and then to coordinate their actions.

Our current work led in collaboration with the LIPN (Laboratory of Computer Science of PARIS 13) focuses
on the extension of the SCALA graphs to temporal aspects, that have to be taken into account in the agents’
plans and in the coordination mechanisms. Indeed the agents in such applications have to respect duration on
their tasks or on the achievement of their joint goals. Operations on plans under time constraints are also
examined to enable the simultaneous management of events. These operators enable the agents to cooperate
through the concatenation, the insertion or the parallelisation of their plans. The formalism that we are
exploring is close to the timed automata and should allow to easily model some of our connectors such as the
refinement and abstraction connectors and to validate the generated plans [ALU 94] [BER 97].
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Abstract

The Autonomous Sciencecraft Experiment flight demonstration (ASE) will fly onboard the US Air Force’s
TechSat-21 constellation, an unclassified mission scheduled for launch in 2004.  ASE will use onboard science
analysis, replanning, robust execution, and formation flying to radically increase science return by enabling
intelligent downlink selection and autonomous retargeting.  Demonstration of these capabilities in a flight
environment will open up tremendous new opportunities in planetary science, space physics, and earth science
that would be unreachable without this technology.

1 Introduction

There is an increasing desire in many organizations, including NASA and the US Department of Defense, to
use constellations or fleets of autonomous spacecraft working together to accomplish complex mission
objectives.   The Air Force Research Laboratory (AFRL) has initiated the TechSat-21 program to serve as a
proof of concept mission for a new for space mission paradigm.  This paradigm seeks to reduce costs and
increase system robustness and maintainability by distributing functionality over several micro-satellites flying
in formation.  The distributed functionality includes processing, command and control, communications, and
payload functions.  A chief objective is for the system of micro-satellites to in effect function as a “virtual”
satellite, which can be controlled and tasked as if it were a single satellite.

TechSat-21 is scheduled for a late 2004 launch and will fly three satellites in a near circular orbit at an altitude
of 600 km (See Figure 1.)  The primary mission is one year in length with the possibility for an extended
mission of one or more additional years.  During the mission lifetime the cluster of satellites will fly in various
configurations with relative separation distances of approximately 100 meters to 5 km.  One of the objectives
of TechSat-21 is to assess the utility of the space-based, sparse-array aperture formed by the satellite cluster.
For TechSat-21, the sparse array will be used to synthesize a large radar antenna.  Three modes of radar
sensing are planned: synthetic aperture radar (SAR) imaging, moving target indication (MTI), and geo-
location.

Paper presented at the RTO AVT Course on “Intelligent Systems for Aeronautics”,
held in Rhode-Saint-Genèse, Belgium, 13-17 May 2002, and published in RTO-EN-022.
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Figure 1 – TechSat-21 Configuration

The principal processor onboard each of the three TechSat-21 spacecraft is a BAE Radiation hardened 175
MIPS, 133MHz PowerPC 750 running the OSE 4.3 operating system from Enea Systems.  OSE was chosen
because it is inherently message-passing-based and particularly suitable for distributed applications.  Each
satellite will have 256 Kbytes of EEPROM for boot loads and 128 Mbytes of SDRAM.  Communications will
be through a Compact PCI bus.  For storage of payload data and some large flight software components eight
disk drives per spacecraft will be used.

The ASC onboard flight software includes several autonomy software components:

• Onboard science algorithms that will analyze the image data, generate derived science products, and
detect trigger conditions such as science events, “interesting” features, and changes relative to previous
observations.

• Robust execution management software using the Spacecraft Command Language (SCL) [7] package to
enable event-driven processing and low-level autonomy.

• The Continuous Activity Planning, Scheduling, and Replanning (CASPER) [4] planner that will replan
activities, including downlink, based on science observations in the previous orbit cycles.

• The ObjectAgent and TeamAgent cluster management software that will enable the three TechSat-21
spacecraft to autonomously perform maneuvers and high-precision formation flying to form a single
virtual instrument.

The onboard science algorithms will analyze the images to extract static features and detect changes relative to
previous observations. Prototype software has already been demonstrated on X-band radar data (from Space
Shuttle missions) to automatically identify regions of interest including: regions where change has occurred,
such as flooding, ice melt, and lava flows, as well as regions containing recognizable features of interest such
as craters and volcanoes.  Such onboard science will enable retargeting and search, e.g., shifting the radar aim-
point on the next orbit cycle to identify and capture the full extent of a flood.  Onboard science analysis would
also enable capture of short-lived science phenomena at fine time-scales without overwhelming onboard
caching or downlink capacities.  Future examples can include: eruption of volcanoes on Io, formation of jets
on comets, and phase transitions in ring systems. Generation of derived science products (e.g., boundary
descriptions, catalogs) and change-based triggering will also reduce data volumes to a manageable level for
extended duration missions that study long-term phenomena such as atmospheric changes on Jupiter and
flexing and cracking of the ice crust on Europa.

The onboard planner (CASPER) will generate mission operations plans from goals provided by the onboard
science analysis module. The model-based planning algorithms will enable rapid response to a wide range of
operations scenarios based on a deep model of spacecraft constraints, including faster recovery from spacecraft
anomalies.  The onboard planner will accept as inputs both science and engineering goals and ensure high-
level goal-oriented behavior for the constellation.
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The robust execution system (SCL) accepts the CASPER-derived plan as an input and expands the plan into
low-level commands.  SCL monitors the execution of the plan and has the flexibility and knowledge to
perform event-driven commanding to enable local improvements in execution as well as local responses to
anomalies.  The ObjectAgent and TeamAgent cluster management software manages the maneuver planning
and execution for the constellation.  This software accepts high-level constellation formation goals from
CASPER and plans and executes these formations to support science (e.g. radar imaging) and engineering (e.g.
downlink) activities.

One of the ASE demonstration scenarios involves monitoring of lava flows in Hawaii.  SIR-C radar data have
been used in ground-based analysis to study this phenomenon. The ASE concept would be applied as follows:

(1) Initially, ASE has a list of science targets to monitor.
(2) As part of normal operations, CASPER generates a plan to monitor the targets on this list by

periodically imaging them with the radar.
(3) During such a plan, a spacecraft images the volcano with its radar.
(4) Onboard, a reflectivity image is formed.
(5) The Onboard Science Software compares the new image with a previous image and detects that the

lava field has changed due to new flow.  Based on this change the science software generates a goal to
acquire a new high-resolution image of an area centered on the new flow.

(6) The addition of this goal to the current goal set triggers CASPER to modify the current operations plan
to include numerous new activities in order to enable the new science observation.  During this
process CASPER interacts with ObjectAgent to plan required slews and/or maneuvers.

(7) SCL executes this plan in conjunction with ObjectAgent and TeamAgent, which execute maneuvers
planned by CASPER and requested at run-time by SCL.

(8) Based on the science priority, imagery of identified “new flow” areas are downlinked. This science
priority could have been determined at the original event detection or based on subsequent onboard
science analysis of the new image.

As demonstrated by this scenario, onboard science processing and spacecraft autonomy enable focusing of
mission resources onto science events so that the most interesting science data are downlinked.  In this case, a
large number of high priority science targets can be monitored and only the most interesting science data
(during times of change and focused on the areas of change) need be downlinked.

The ASE concept has been selected for flight on the TechSat-21 mission and the necessary software is
currently being matured and brought into flight readiness.  Key TechSat-21 design reviews occur in Spring
2001 to Spring 2002, with final delivery of the spacecraft and software in September 2003.  The nominal
launch date is September 2004.  The NASA New Millennium Space Technology 6 Project has selected the
ASE concept for flight demonstration.

2 Onboard Science

There are two components of the onboard science software, the image formation module and the onboard
science algorithms.  The image formation module forms a (possibly reduced resolution) SAR image onboard
the spacecraft from the raw phase history (demodulated I and Q returns).  In the ASE mission concept, we only
need to form a few images per orbit cycle (in contrast to a global mapping mission such as Magellan); hence,
the necessary processing can be carried out onboard.  Our baseline calculations estimate that forming a 15 km
diameter spot size (dependent upon grazing angle) 10-meter by 10-meter resolution image can be formed in at
best 18 seconds (with full processor utilization).  A 2-meter resolution would require approximately 45
minutes.  Both these timescales are considerably less than the 90-minute orbit decision cycle for downlink.

Once the image has been formed, the onboard science algorithms can then analyze the SAR image(s) to create
derived science products and detect trigger conditions, such as changes relative to a previous orbit cycle. For
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example, fresh lava and old lava have very different backscatter properties; thus, new lava flows can be easily
detected and localized. Likewise, water has very different backscatter characteristics than soil, enabling the
detection of flooding.

We are currently investigating several methods of converting images into derived science products. The
derived products will in effect be summarizations that are significantly more compact than the raw image (or
phase history) data. Intensity and texture-based segmentation (in common use for ground-based processing)
will be evaluated for effectiveness in generating terrain boundary descriptions and region summarizations
(e.g., a flooded region will be described by an average radar cross-section and a polyline outlining its
boundary). Statistical pattern recognition techniques [1] [3] will be used to identify specific types of features
such as volcanoes, lakes, and iceberg fragments. Figure 2 shows results from a prototype lava cone recognition
algorithm under development for ASC flight.  Output from such a module could be used to downlink higher
resolution data around items of interest or by downlinking a summary catalog of the interesting features.
Recently developed discovery techniques [2] will also be applied to identify “interesting” regions that differ
from their local background, leading to a compact description of an image in terms of subimage patches and
locations.

 

Figure 2 - Automatically identified lava cones in X-SAR image of Lava Beds National Monument, CA

In addition to calculations based on a single image, the onboard science analysis software will include change
detection algorithms that compare images of the same region taken at different times.  The change detection
capability is particularly relevant for capture of short-term events at fine time-scale resolutions without
overwhelming onboard caching systems, and also for compressing long-term “monitoring” observations in
which changes are infrequent.  For space science missions, example applications include tracking atmospheric
changes on Jupiter, Neptune, or Triton (from optical image data), tracking ice plate movement on Europa,
monitoring known (and identifying new) volcanoes on Io, capturing fine time-scale events such as jet
formation on comets or phase transitions in ring systems, and detecting new cratering on planets and moons.

To detect change, we will test for statistically significant differences in derived descriptors such as region
sizes, locations, boundaries, and histograms, as well as in the raw pixel data. The latter case is complicated by
the need to ensure that two images are approximately co-registered. The orbit repeatability and small absolute
positional uncertainty of the TechSat-21 group will help insure approximate co-registration.  Also, since the
magnitude of change necessary to initiate a trigger event can be specified as a parameter, some degree of
robustness to image misalignment will be built-in.  For change detection, radar observations have the
advantage that the illumination, target, and receiver geometry remains basically the same from pass to pass.
(In optical imagery, irrelevant change caused by sun position complicates the change detection problem).
Figure 3 contains successive X-SAR radar images indicating lava flow on Kilauea Volcano, Big Island,
Hawaii.  The changes in the highlighted areas of the image are indicative of lava flow that occurred in between
images.  This is the type of change detection that our algorithms will perform onboard TechSat-21.
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Figure 3 - Hawaii Lava Flows

All of the algorithms described scale linearly in the number of image pixels.  Hence image resolution can be
selected appropriately to ensure that computational and memory requirements fit within the onboard
processing capabilities.  For example, a previous study of the recognition algorithm in [1] indicates complexity
on the order of 250 operations per pixel to reliably detect a particular type of Venus small shield volcano in the
Magellan SAR data.  Using this figure as a baseline, we could process approximately 105 pixels per second on
the PowerPC 750 flight processor.

Detection of the image- and change-based triggers described here will enable a range of automated spacecraft
reactions.  On the conservative end of the spectrum, triggers can be used to prioritize data for downlink.  For
example, regions in which change was detected may be down linked first (with TechSat-21, it will take a full
four days to downlink the entire onboard cache of the three spacecraft).  Early access to the “interesting data”
would be especially valuable to the project scientist, potentially enabling a request for modification of the
original observation plan.

A slightly more aggressive use of the trigger information involves actually “discarding data”. For example, if
nothing significant has changed in a region, that region may be excluded from the downlink.  Although a
scientist would never like to discard data, the realities of a finite onboard cache and constrained downlink
bandwidth will sometimes force a discard to satisfy a primary mission objective.  For example, if the science
goal is to capture the fine temporal details of jet formation on a comet, the onboard cache will quickly
overflow unless older data that doesn’t contain the desired event is discarded or degraded to lower resolution.

A third, more aggressive, but potentially extremely rewarding use of the trigger information that we will
demonstrate onboard TechSat-21 is to autonomously retarget observations.  For example, if an image indicates
flooding in a region, subsequent orbits will employ the planner to close the control and decision loop onboard
and use a modified radar aim-point in an attempt to capture the full scope of the flooding. Similarly, since
many geological features are spatially clustered (e.g., volcano fields, hydrothermal vents), detection of some
features will be used to seed a broad area search (e.g., using the three spacecraft radars in a coordinated effort
to look in the surrounding area for additional instances).

3 Robust Execution

TechSat-21 will fly The Spacecraft Command Language (SCL) [7] to provide robust execution.  SCL is a
software package that integrates procedural programming with a real-time, forward-chaining, rule-based
system.  A publish/subscribe software bus allows the distribution of notification and request messages to
integrate SCL with other onboard software.   This enables either loose or tight coupling between SCL and
other flight software as appropriate.  Dynamic messages are supported to allow for future growth as ever-
smarter software agents are added to the constellation in different satellites.

The SCL “smart” executive supports the command and control function.  Users can define scripts in an
English-like manner.  Compiled on the ground, those scripts can be dynamically loaded onboard and executed
at an absolute or delta time.  Ground-based absolute time script scheduling is equivalent to the traditional
procedural approach to spacecraft operations based on time.  In the ASE concept, SCL scripts will also be
planned and scheduled by the CASPER onboard planner.  The science processing agents, cluster management
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software, and SCL work in a cooperative manner to generate new goals for CASPER.  These goals are sent
within the messaging system.

Spacecraft telemetry from all satellites is gathered onboard and fed into the integrated expert system.
Significant change in the data will trigger user-defined rules.  Those rules can be used for fault detection,
isolation and recovery (FDIR).  In that case, rules can be used to execute recovery scripts.  Another application
of rules is for mission constraint checking to prevent operator errors or, more simply, to provide for command
pre-processing.

SCL is a mature software product, and has successfully flown on Clementine I, and ROMPS.  SCL has also
been used in a wide range of ground-based control and operations contexts.  As such it represents a good basis
for integrating the multiple ASE autonomy functions: onboard science, planning, and constellation
management.

4 Onboard Mission Planning

Traditionally, the majority of planning and scheduling research has focused on a batch formulation of the
problem.  In this approach, when addressing an ongoing planning problem, time is divided up into a number of
planning horizons, each of which lasts for a significant period of time. When one nears the end of the current
horizon, one projects what the state will be at the end of the execution of the current plan.  See Figure 4.  The
planner is invoked with a new set of goals for the new horizon and the expected initial state for the new
horizon; the planner generates a plan for the new horizon.  As an example of this approach, the Remote Agent
Experiment operated in this fashion [8].

P lan  fo r 
n ex t h o rizon

P lan  fo r 
nex t ho rizo n

Figure 4: Traditional Batch Plan
then Execute Cycle

This approach has a number of drawbacks.  In the batch oriented mode, typically planning is considered an
off-line process, which requires considerable computational effort, and there is a significant delay from the
time the planner is invoked to the time that the planner produces a new plan.  If a negative event occurs (e.g., a
plan failure), the response time until a new plan is generated may be significant.  During this period the system
being controlled must be operated appropriately without planner guidance.  If a positive event occurs (e.g., a
fortuitous opportunity, such as activities finishing early), again the response time may be significant.  If the
opportunity is short lived, the system must be able to take advantage of such opportunities without a new plan
(because of the delay in generating a new plan).  Finally, because the planning process may need to be initiated
significantly before the end of the current planning horizon, it may be difficult to project what the state will be
when the current plan execution is complete.  If the projection is wrong the plan may have difficulty.

To achieve a higher level of responsiveness in a dynamic planning situation, we utilize a continuous planning
approach and have implemented a system called CASPER (for Continuous Activity Scheduling Planning
Execution and Replanning) [4].  Rather than considering planning a batch process in which a planner is
presented with goals and an initial state, the planner has a current goal set, a plan, a current state, and a model
of the expected future state.  At any time an incremental update to the goals, current state, or planning horizon
(at much smaller time increments than batch planning)1 may update the current state of the plan and thereby
invoke the planner process.  Such an update may be an unexpected event or simply time progressing forward.
                                                          
1 For the spacecraft control domain we are envisioning an update rate on the order of tens of seconds real time.
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The planner is then responsible for maintaining a consistent, satisfying plan with the most current information.
This current plan and projection is the planner’s estimation as to what it expects to happen in the world if
things go as expected.  However, since things rarely go exactly as expected, the planner stands ready to
continually modify the plan.  From the point of view of the planner, in each cycle the following occurs:

• Changes to the goals and the initial state are first posted to the plan
• Effects of these changes are propagated through the current plan projections (including conflict

identification)
• Plan repair algorithms [5] are invoked to remove conflicts and make the plan appropriate for the current

state and goals

This approach is shown in Figure 5.  At each step, the plan is created by using incremental replanning from:

• The portion of the old plan for the current planning horizon;
• The change (∆) in the goals relevant for the new planning horizon;
• The change (∆) in the state; and
• The new (extended) planning horizon

Current Plan

New Plan

∆ State ∆ Goals

∆ Goals

∆ Goals

New Plan

New Plan

∆ State

∆ State

Figure 5 - Continuous Planning
Incremental Plan Extension

In the ASE concept, CASPER is responsible for long-term mission planning in response to both science goals
derived onboard as well as anomalies.  In this role, CASPER must plan and schedule activities to achieve
science and engineering goals while respecting resource and other spacecraft and constellation operations
constraints.  For example, when change is detected in an image, CASPER plans a response.  If it is appropriate
to take a more detailed image of the change area, CASPER will modify the operations plan to include the
necessary activities to re-image.  If this includes changing the formation of the constellation, the cluster
manager will be consulted.  Other required activities, such as calibration of the radar, acquisition of the image,
and subsequent science processing are all planned by CASPER.

5 Cluster Management

Several new missions being proposed by NASA call for constellations or fleets of autonomous spacecraft
working together to accomplish complex mission objectives.  Some of the many advantages of using
distributed satellite systems include greater performance, lower cost, and improved fault tolerance, ability to
reconfigure, and ability to upgrade. However, coordinating the activities of all the satellites in a constellation is
a challenging task.  Princeton Satellite Systems (PSS) is developing the ObjectAgent (OA) and TeamAgent
(TA) systems to create an easy to use agent-based software architecture for autonomous, distributed systems.
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In ObjectAgent, control systems are decomposed into agents, each of which is a multi-threaded process.
Agents are used to implement all of the software-based functionality and communicate via a flexible
messaging architecture. Each message has a content field written in natural language that is used to identify the
purpose of the message and its contents.  Agents may be loaded at any time and can be configured when
launched, which simplifies the process of updating flight software and removes the complexity associated with
software patches.  Agents will automatically seek out other agents who can provide them with the inputs they
need.  Decision-making and fault detection and recovery capabilities are also built-in at all levels.
ObjectAgent also provides a graphical user interface (GUI)-based development environment for the design and
simulation of multi-agent systems. This design environment simplifies the agent creation process and provides
a common interface to a number of advanced control and estimation techniques.

The TeamAgent system applies ObjectAgent to the problem of controlling multiple cooperative satellites.
TeamAgent enables agent-based multi-satellite systems to fulfill complex mission objectives by autonomously
making high- and low-level decisions based on the information available to any and/or all agents in the
satellite system. The required spacecraft functions for the multiple spacecraft missions have been identified
and the use of software agents and multi-agent based organizations to satisfy these functions have been
demonstrated [6].  Simulations of multi-agent systems for multiple satellites have been developed using
TeamAgent to illustrate collision avoidance and reconfiguration for a four-satellite constellation.  Agents were
used to monitor for collisions, reconfigure the fleet, optimize fuel usage across the cluster during
reconfiguration, and develop a fuel-optimal maneuver for reconfiguration.

ObjectAgent/TeamAgent is scheduled to fly on the Air Force’s TechSat-21 mission involving three satellites
flying in formation and acting as a “virtual” satellite.  ObjectAgent/TeamAgent will be used to build two
elements of the flight software, the Cluster Manager and the Spacecraft Manager.  The Cluster Manager is
designed to perform relative control of the satellites in the cluster.  This control task includes relative station
keeping, estimation of the cluster center-of-mass, and estimation of the relative positions of each satellite.
This also includes cluster-level commanding, health summarization, and fault detection as relating to the
attitude and orbit of the spacecraft and constellation.  The Spacecraft Manager performs many of the functions
that would normally reside on the ground including spacecraft-level fault detection.  The Spacecraft Manager
manages at a level above the spacecraft flight software, while the Cluster Manager manages the three
Spacecraft Managers.

These ObjectAgent and TeamAgent functions encompass both plan time and execution time capabilities.  At
plan time, CASPER consults OA and TA on the feasibility and resource requirements to perform formation
changes, maneuvers, and slews.  At execution time, formation changes, maneuvers, and slews planned by
CASPER and requested by SCL are performed by OA and TA.  In this execution time function, OA and TA
perform closed loop control in their use of lower-level attitude and control software to achieve the desired
goals.

Current efforts involve transitioning this demonstrated software from workstations to the TechSat-21 flight
software environment (OSE Operating system on PowerPC 750s).  The OSE operating system is a message
passing OS designed for distributed architectures and thus facilitates the distributed agent-based architecture.

6 Related Work and Conclusions

In 1999, the Remote Agent experiment (RAX) [11] executed for several days onboard the NASA Deep Space
One mission.  RAX demonstrated a batch onboard planning capability but did not demonstrate onboard
science.  RAX also included the Livingstone mode identification and fault recovery software [14].

PROBA [13] is a European Space Agency (ESA) mission that will be demonstrating onboard autonomy.
PROBA will be launching in 2001.
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The Three Corner Sat (3CS) University Nanosat mission will be using the CASPER onboard planning
software integrated with the SCL ground and flight execution software [6].  The 3CS mission is scheduled for
launch in late 2002.  3CS will use onboard science data validation, replanning, robust execution, and multiple
model-based anomaly detection.  The 3CS mission is considerably less complex than TechSat-21 but still
represents an important step in the integration and flight demonstration of onboard autonomy software.

ASE will fly on the TechSat-21 mission and demonstrate an integrated autonomous mission using onboard
science analysis, replanning, robust execution, model-based estimation and control, and formation flying.
ASE will perform intelligent science data selection that will lead to a reduction in data downlink.  In addition,
ASE will increase science return through autonomous retargeting.  Demonstration of these capabilities in
onboard the TechSat-21 constellation mission will enable radically different missions with significant onboard
decision-making leading to the pursuit of novel science opportunities.  The paradigm shift toward highly
autonomous spacecraft will enable future NASA missions to achieve significantly greater science returns with
reduced risk and cost.
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Genetic Algorithms In Aerospace Design:
Substantial Progress, Tremendous Potential

Murray B. Anderson
Sverdrup Technology Inc./TEAS Group

308 West D. Avenue
Building 260

Eglin Air Force Base, FL 32542, USA

Executive Summary
This paper was written to provide an overview of the potential of using genetic algorithms
(GA’s) for aerospace design or to support aerospace design efforts.  Genetic algorithms can
design individual vehicle components, like the external aerodynamic shape, the internal
supporting structure, the propulsion system, the autopilot, or just about any other system
component that has requirements that can be mathematically represented and modeled.
Genetic algorithms can also be used to support design studies through their ability to find
optima for complicated multi-dimensional optimization topologies.  This paper, which
overviews multiple recent aerospace design efforts using genetic algorithms, was an invited
paper presented at a joint NATO/Von-Karmen-Institute Workshop on Intelligent System
held in Brussels, Belgium during May of 2002.

Abstract
Since the mid to late 1980’s, Genetic Algorithms have been increasingly applied to
aerospace problems, producing some exciting results.  Almost every discipline in aerospace,
from Guidance, Navigation, and Control to Propulsion and Structures, has yielded itself to
the power of genetic algorithms.  The shear volume of applications that GA’s have been
applied to has grown tremendously over the past decade.  This growth can, to a large degree,
be attributed to a growth in computer speed coupled with a growth in the understanding that
advanced computing techniques can often produce designs vastly superior to those possible
by trial and error or by experience alone. As the design and analysis space grows more non-
linear for advanced systems, engineers and their managers are beginning to realize the
potential of using a non-linear design and analysis tool to help produce better products.

Publications Analysis by Discipline
A quick survey of papers published in recent years that have used genetic algorithms as the
key design/analysis tool is quite revealing.  Figure 1 shows how the publication distribution
has varied through the years for AIAA conference papers.  It is interesting to note the
categories that have received the most attention in recent years: multidisciplinary design
optimization, aerodynamics, propulsion, and structures/structural-dynamics.  Also interesting
is the category called GA’s.  These publications have applied GA’s to aerospace problems,
plus they investigate different modes of GA behavior based on population sizing, crossover
techniques, mutation levels, etc., to study how best to apply GA’s to particular problems.

Paper presented at the RTO AVT Course on “Intelligent Systems for Aeronautics”,
held in Rhode-Saint-Genèse, Belgium, 13-17 May 2002, and published in RTO-EN-022.
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Figure 1.  Trends in AIAA Conference Paper Publications

In terms of total numbers of publications within AIAA conferences, Figure 2 shows an
interesting trend.  Even number years have drawn considerably more publications than odd-
number years.  The reason for this trend is not clear.  The year 1998 produced the most GA-
Aerospace publications with 34.  There is no clear growth trend in the total number of GA-
related conference papers for AIAA alone during the 6-year time period shown in the figure.
As the raw numbers show, there are not enough AIAA papers to support an independent GA
Conference each year. Right now the GA applications are spread out among up to 5 or 6
different AIAA conferences each year, making it challenging to keep track of all the GA
applications.  By looking at the trends, there probably are enough papers to support a bi-
annual AIAA GA conference similar to the International Conference on Genetic Algorithms,
but such a conference would require significant coordination and might actually hinder the
spread of GA’s.  By being presented as a “new” application at the individual discipline-
specific conferences, GA’s are given a good exposure across the breadth of the aerospace
community.
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Figure 2.  Total AIAA Conference Paper Publications

When a more broad inclusion of publications is considered, including aerospace-related GA
publications in journals from ASME, AHS, or IEEE for example, it is interesting that GNC,
aerodynamics, and structures/structural dynamics are still very dominant, but MDO is not
(see Figure 3).  Scheduling/Process-Control emerges as a very important area for GA
applications.   MEMS, communications, heat transfer, damage control, and acoustics all
emerge during certain years, but do not have a steady publication record in general.
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Figure 3.  Non-AIAA Publications with Aerospace Applications

Figure 4 shows how AIAA contributes to the total number of GA-aerospace publications
each year.  In general, AIAA is generally a significant proportion of the total publications,
but some years AIAA is less than ½ the total publications.  This fact makes it difficult to stay
abreast of all the GA publications that occur each year.  There is no “one place” to look for
GA-aerospace applications.  The year 2000 was a significant year for GA-aerospace
application publications, where the total number neared 100.  If the year 2001 is omitted
from consideration, there would seem to be a fairly consistent upward trend in the number of
GA-aerospace publications.  It is very likely that all of 2001’s publications are not yet
available on the internet, so the number of publications for 2001 could actually be higher
than what is shown in the figure.
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Figure 4.  Comparison of Total AIAA and Non-AIAA Publications

With all these publications, it is impossible to list or even discuss each one.  But in order to
give a sampling of the types of design studies encompassed in all these publications, a few
papers in the most prominent technical areas are highlighted to show what is possible when a
GA is used to help engineering design and analysis.

Genetic Algorithms in Guidance, Navigation, and Control
Guidance, Navigation, and Control (GNC) was one of the first technical areas in aerospace
engineering exploited by GA’s.  For a time, David Goldberg1, author of the most popular
text on GA’s, was at the University of Alabama in the Aerospace Engineering Department.
K. Krishnakumar, the organizer of this NATO/VKI workshop was also a professor there at
the same time.   Together, they published some of the first papers on using GA’s for
Aerospace applications.  GNC was one of their first application areas.  One 1990 conference
paper, later a Journal of Guidance, Control, and Dynamics paper2, showed how a GA can
design a lateral autopilot and a windshear controller.  In the words of the authors:

“The results show that a variety of aerospace control system optimization
problems can be addressed using genetic algorithms with no special problem-
dependent modifications.”

Certainly the authors were correct that a variety of control problems can be solved with
GA’s.  But whether the authors could have forseen the growth of GA applications beyond
control systems is unknown.  Besides the autopilot/controller applications envisioned by the
authors within the GNC field, GA’s have also been used for mechanical control system
component studies.  For example, Rogers3 has used a GA to help select the right actuator for
a given problem.

Air data systems also play a significant roll in vehicle control.  One of the earliest GA
applications to air data systems was by Deshpande, Kumar, Seywald and Siemers4 and later

0

10

20

30

40

50

60

70

80

1996 1997 1998 1999 2000 2001

Non-AIAA
AIAA Conference Only

Full Results Not 
Available for 

2001



8-6

by Anderson and Lawrence and Lopez5. In each of these papers a GA was used to design a
working array of flush-orifice air data ports to provide accurate estimates of vehicle flight
conditions.

Norris and Crossley6 recently used a genetic algorithm to find gains to control a standard
pedagogical two-disk torsional spring system.  The approach used a very simple two-loop
proportional-integral control system with velocity feedback.  The two-loop controller had
three gains that needed to be determined as a function of variable spring stiffness.  The
objective functions were defined such that good gain values produce little error between the
commanded and achieved disk rotation angles.  Since two separate disks were being
commanded in twist, a pareto genetic algorithm was used to try to minimize the rotational
errors in both disks simultaneously.  At the conclusion of 80 generations, the resulting
family (i.e. population of 80 members) of three controller gains were hybrid performers that
would work reasonably well for both disks.  Two points worth noting from this study was
that the crossover probability was rather low (50 percent) and the population size was three
times the number of bits required to represent the three gains (12 bits per gain, 36 bits total).

Aerospace control system publications have also led to GA’s being applied in other fields.
For example, another interesting genetic algorithm controller application was recently
presented by McGookin7 to control the steering of oil tankers to multiple waypoints in a
narrow channel.  In McGookin's work the control system consisted of a two-loop autopilot
and a sliding mode controller (SMC).  The four parameters being optimized consisted of the
1st and 2nd heading loop poles (frequency plane), a heading switch gain, and a so-called
heading boundary layer thickness.  The goal (e.g. objective function) of the study was to find
values for these four parameters such that the oil tanker passed within an acceptable distance
of each waypoint while minimizing rudder movement.  Minimizing rudder movement saves
fuel and time.  The results shown indicate that the genetic algorithm found excellent values
of the four "gains" in 100 generations.  Rudder movement was minimal and each waypoint
was reached with very little error.  In terms of the genetic algorithm operation in this study,
it is interesting that McGookin used a 5 percent mutation rate, which is at least an order of
magnitude higher than conventional values of this parameter.  Since there is no agreement
among genetic algorithm researchers about value ranges for crossover and mutation, it is
interesting to note what values other researchers use for their applications.

Another study by Martin8 addressed the issue of autopilot gain scheduling by using genetic
algorithms to replace the ad hoc design process typical in linear gain scheduling with a
genetically-fit hyperplane-surface strategy.  The genetic algorithm was basically used to
optimally design the gain schedule.  Of course a gain scheduling approach that might work
for one scenario could be inadequate without adaptation.  Adaptation strategies have been
pursued by Karr and Harper9 using genetic algorithms to augment fuzzy logic controllers.
Coupling genetic algorithms with neural networks appears to offer improvement to adaptive
control that neither approach has independently.  The fuzzy controller (neural network) uses
a "rule-of-thumb" strategy to control a chemical system, but the chemical system is
periodically changed, thereby invalidating some of the rules-of-thumb.  As the system
changes, a learning algorithm (the genetic algorithm in this case) tests new rules-of-thumb so
that the fuzzy controller can continue to control the chemical system.  For autonomous
systems10 this type of approach has obvious advantages assuming the genetic algorithm can
keep up with the rate of change of the system.  Karr11 later expanded this work to control the
rendezvous of two spacecraft.  Another excellent work in adaptive fuzzy logic controller
design using genetic algorithms was done by Homaifar and McCormick12 to control a simple
electronic cart.  The genetic algorithm designed both the rules-of-thumb and the membership
functions for the system in an automated process that did not require human input.  Other
publications worth mentioning include Sweriduk, Menon, and Steinberg13, Mondoloni14, and
Perhinschi15.
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Genetic Algorithms in Aerodynamics
In recent years researchers have applied gradient-based optimization schemes to aerodynamic
design16,17,18,19, but these methods are subject to several undesirable restrictions.  First, these
methods require knowledge of the aerodynamic derivatives for each parameter, or combination
of parameters for higher order coupling. These derivatives may not be easily determined and
must be continually recalculated as the design moves through the design space since few
aerodynamic design problems have linear derivatives, especially in multiple dimensions.
Second, gradient-based optimizers must start with a specified set of initial parameters, which
can bias future solutions toward a local optimum in the viscinity of the starting point. Third,
gradient-based methods cannot be applied to problems where there are discontinuities in the
design space because the derivatives in these regions are not defined.  Discontinuities are
common in aircraft design.  As Gage20 points out, there are no partial engines or partial seats
on an aircraft.  Finally, gradient search procedures work efficiently when there are a small
number of design variables and when the variables are essentially independent of each other.
As the number of design variables increases and coupling of the variables occurs (most often
the case for complex aerodynamic designs), gradient-based algorithms lose much of their
efficiency.  Only recently have attempts been made to couple artificial intelligence (i.e.
learning) techniques to aerodynamic design.  The research of Gage and Kroo20 was focused
on applying genetic algorithms to the topological design of nonplanar wings.  In their work
the wing was broken into several segments which were allowed to vary in incidence and
dihedral angles.  The goal of the optimization was to minimize induced drag given a fixed
lift.  Their approach used both a penalty and repair approach to deal with solutions not
achieving the fixed lift value. Bramlette and Cusic21 have also applied genetic methods to the
parametric design of aircraft and Tong22 has used genetic algorithms to conduct preliminary
design of turbine engine airfoils after gradient methods had stalled in a local optimum.  More
recently Anderson23 has applied genetic algorithms to subsonic wing design with the goal of
producing good aerodynamic shapes, but also given the additional constraint that the
structure must not break. Anderson used penalty weights to combine Lift, L/D ratio, and
structural design margins into one global objective function. Anderson, like Gage20, pointed
out that the achieved solution is strongly dependent upon the values of the penalty weights, a
very unappealing result.  Later, Anderson24 removed the weighting procedure and instead
used a pareto genetic algorithm on the same problem.  The results of this later work showed
that pareto genetic algorithms are ideally suited for complex optimization problems with
diverse goals.  Such an approach does mean, however, that the designer must scan the
resulting solutions in the pareto-optimal set to determine which solution or solutions are
most desirable.  Unlike single objective problems where there is a clear winner, multi-
objective problems require judgement about which solutions are preferable.  For cases where
there are both aerodynamic and structural goals in the design, there is usually a willingness
to trade-off some aerodynamic performance to ensure that structural integrity goals are met.
Some very recent work by Sharatchandra, Sen, and Gad-el-Hak25 shows that a genetic
algorithm can be used to design micro-devices also.  In this work a viscous micropump is
designed to maximize the flow rate between two parallel plates encasing a rotating cylinder.
The basic problem was to let the genetic algorithm determine the optimum plate spacing, the
correct upper plate shape (only the lower plate was flat), and the optimal vertical location of
the rotating cylinder in order to maximize the mass flow of the device at the exit plane of the
two plates.  The computational approach used to calculate the mass flow rate in the device
was the Navier-Stokes equations.  Since the Navier-Stokes equations can be rather time
consuming to solve, what should be called a micro-genetic algorithm, in combination with a
multi-point crossover (parameter-based) scheme and a high mutation rate, was employed in
an attempt to reduce the total number of Navier-Stokes solutions attempted.  The results
indicated that the micro genetic algorithm with relatively few Navier-Stokes solutions (551
total) achieved good pump designs when compared to standard large population genetic



8-8

algorithms.  Gregg and Misegades26 used a “parameter evolution” strategy coupled with
Jamesons’ FLO-22 code (full potential method) to design transonic wings in a parallel mode.
By distributing individual cases to multiple processors significant turn-around time
reductions were achieved.  The authors noted that taking advantage of the inherent
parallelization capability of population based search techniques was a strength of the
approach.  The “parameter evolution” strategy is similar to simulated annealing and relies
more heavily on random parameter variations than does the survival-of-the-fittest strategy
embedded in a genetic algorithm.  Both Sharatchandra25 and Gregg26 used procedures with
essentially high mutation rates when compared to the standard genetic algorithm.  For small
populations, however, there continues to be emerging evidence that higher than normal
mutation rates are justified.  Other papers using GA’s for aerodynamic optimization worth
referencing are by Oyama, Obayashi, and Nakashi27,28 of Tohoku University in Japan.

Another emerging trend in optimization using genetic algorithms is to couple the genetic
algorithm with more traditional design techniques to speed convergence.  The goal of these
hybrid methods is to use the global search strength of the genetic algorithm to provide useful
information (starting point) for gradient ascent/descent methods.  Anderson, Lawrence, and
Lopez29 successfully coupled a genetic algorithm with a differential corrections method to
find flight condition estimates (Mach, angle of attack, aerodynamic roll angle, freestream
pressure) from static pressures measured around a missile forebody.  The genetic algorithm
provided the initial “guess” to the gradient descent method.  Fast and accurate flight
condition estimates were consistently obtained with this method.  Selig and Coverstone-
Carroll30 used a genetic algorithm coupled with an inverse design method to design wind
turbines (wind mills) which maximize power output at varying wing speeds.  The design
variables included blade pitch, blade chord, and blade twist distributions with span.  In this
case the genetic algorithm executed the design search and the inverse procedure enforced
certain constraints while giving the designer flexibility in choosing which variables to iterate
and which to send to the genetic algorithm.  Another hybrid approach by Cao and Blom31

coupled a genetic algorithm with a standard gradient approach to maximize lift coefficient
for a multi-element airfoil.  The design variables included flap angle, gap, overlap, and flap
surface geometry.  At some prescribed threshold lift coefficient, the genetic algorithm was
halted and the gradient method was begun.  This approach is very similar to the method of
Anderson29, however, it should be noted that both of these works found that selecting the
proper threshold for switching algorithms is critical to the final result.  GA’s have recently
been growing in popularity for aerodynamic design studies using Euler equations.  Jang, and
Lee32 recently presented a study of transonic airfoil design using GA’s coupled to Euler
equations.

Genetic Algorithms in Multidisciplinary Design Optimization
MDO studies have varied significantly over the past few years.  Jones, Crossley, and
Anastasios33 have included both aerodynamic and acoustic optimization together.  Other
authors are trying to expand the use of GA’s to complete systems.  For example, Perez34, et.
al. has recently used a GA to conduct conceptual design studies for aircraft.  Anderson,
Burkhalter, and Jenkins35,36 have performed the same type of conceptual design studies for
missiles, both ground-launched and air-launched, to defeat high speed re-entry vehicles and
highly maneuverable targets.  Ewing and Downs37 have included a feature in their MDO
study not commonly found so far in these types of studies, namely, financial return on
investment.  The financial area will probably be a growth area for these types of conceptual
studies, and a defense contractor that could master providing the most cost-effective
solutions to a given threat would never hurt for business.  Mastering cost estimating during
the design process would likely lead to higher profit margins during manufacturing, so the
motivation should be there in industry to begin pursuing these types of studies.
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Genetic Algorithms in Propulsion
Airbreathing propulsion seems to dominate the current applications of GA’s.  Chernyavsky
et.al38 recently used GA’s to design a 3-D hypersonic inlet.  Torella and Blasi39 recently
published work on using GA’s to design complete gas turbine engines.  Uelschen and
Lawerenz40 were recently focused on the design of axial compressor airfoils using a
combination of artificial neural networks and GA’s.  Schoonover, Crossley and Heister41

recently used GA’s to design hybrid rocket motors. Given the growing interest in hybrids,
this type of application is expected to grow.  On the solid rocket motor front, finding the
optimal design of a solid rocket motor to meet certain criterion has been the subject of some
limited research since the 1960’s, although the 1970’s saw some developments in capability
with the advent of very capable mainframe computers.  In 1980, Sforzini42 commented in his
own early solid rocket optimization paper that despite the tractable mathematics involved in
designing a solid rocket motor, “limited treatment of this subject appears in the literature”.
Twenty-two years later, Sforzini’s statement is still true to a great extent. The preferred
optimization technique still relies heavily on experience and manual “hunt and peck”
techniques to yield desirable rocket motor designs.  Rigorous computer based optimization
techniques have still not been able to penetrate the solid rocket design process in any more
than just a few limited studies and publications.  But given the vast increases in computing
power over the past five years, it is worthwhile to apply computer-based optimization
algorithms to preliminary design of solid rocket motor grains.

One of the first attempts at using an automated procedure to design a solid rocket motor was
by Billheimer43 in 1968.  Although the physical modeling used in this study was limited by
the computational resources available at the time, this paper really acknowledged the
importance of automating the design process for solid rocket motors, and demonstrated
through sensitivity parameters that automation can aide in the preliminary design
environment.  Another early attempt at using a computer to find an optimal solid grain
geometry was by Woltosz44 in 1977.  Woltosz used a pattern search technique developed by
Hook and Jeeves45 and Whitney46 to determine five critical design dimensions which
maximizes the total impulse-to-motor weight ratio while meeting a specified minimum
achieved velocity for a specific vehicle.  This same pattern search technique was also used
by Foster and Sforzini47 to minimize the differences between computed and desired solid
rocket motor ignition characteristics based upon five primary igniter design parameters.  The
pattern search technique was an early precursor to the type of GA work that would come
much later.  GA’s also work on a pattern search basis, but are of course radically different.

One early study that was not based on sensitivity derivatives or any calculus-based
methodology was done by Swaminathan and Madhavan48.  A direct random search
technique, similar to simulated annealing, was the method that was used to determine the
“optimum” composition of propellant ingredients (such as binder, oxidizer, and additives) to
generate the highest possible specific impulse.

Other gradient-based techniques have been used as recently as 1992 by Peretz49 to look at
extending the range of air-to-air missiles through a two-pulse thrust profile.  A quasi-Newton
algorithm was used to define thrust profiles that would allow the missile to enter a glide
phase of flight to extend range prior to re-acceleration of the missile for intercept.  One
interesting conclusion of this study was that zero lift drag and minimum glide velocity had a
much larger impact on eventual range than did conventional rocket motor design parameters
such as specific impulse and mass fraction.

Two of the more modern approaches that have demonstrated applicability to solid rocket
motor design were done by Clergen50 and McCain51.  The systems developed in these studies
can be classified as soft-computing techniques.  Clergen developed a computerized expert
system with a hypertext user interface to aid designers in selecting preliminary designs based
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on past experience (i.e. the experts).  With this system the designer can select, with a user-
friendly interface, design criteria such as minimum motor mass and obtain preliminary
design parameters that might be suitable for the mission being planned.  This system is build
around a data base of known systems.  McCain’s system is also an expert system in the sense
that it is heuristic.  The heuristic performs an independent design variable selection, and
these design variables are then passed to an existing pattern search optimization package to
develop rocket performance characteristics.  The heuristic then analyzes the effect of altering
each independent SRM design variable and selects, based on sensitivity/partial derivatives,
the variables to alter for the next design attempt.  This technique is an advancement on the
pattern search technique of Sforzini, but still has some of the inherent weakness of any
sensitivity derivative approach.

Based on the literature review, the design of solid rocket motor is mostly based upon
experience (experts and hunt-and-peck methods) or gradient/calculus-based techniques.  In
either case, historical knowledge and gradient methods tend to focus on, or end up with,
designs that are not too dissimilar from known designs.  GA’s by the nature of the way they
operate, can jump beyond this local knowledge (or optima) base.   One recent GA
application to solid rocket motor design was by Anderson, Burkhalter, and Jenkins52,53. The
links to the genetic algorithm are all straightforward.  The GA is the controlling routine
which calls the rocket performance code as needed.  The GA passes down the design
parameters through the subroutine call statement and the rocket code passes back a measure
of how well the design performed compared to a specified thrust profile.  The fitness
measurement is basically a root mean square error between the achieved thrust history and
the specified history.  Several cases are presented in the reference, but summary results for
two cases are shown below.  For the first case the desire was to design a large rocket motor
capable of producing 30,000 lbf of thrust for 50 seconds.  Figure 5 shows how well the
genetic algorithm met this goal.

28000

28500

29000

29500

30000

30500

31000

31500

32000

0 10 20 30 40 50 60

Time (sec)

T
hr

us
t (

lb
f)

Desired

Actual

Figure 5.  Genetically Engineered Constant Thrust Profile

The evolution of the grain design producing this thrust is shown in Figure 6.  A five pointed
star, which has a nearly constant burn area as a function of time, was quickly found by the
GA.
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Design History for Constant Thrust Case
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Figure 6.  Evolution of Motor Design for Constant Thrust Case

Figure 7 shows an example of a regressive thrust profile for a much smaller rocket motor.
As with the constant thrust case, the GA nearly perfectly matches the desired profile.
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Figure 7.  Genetically Engineered Regressive Thrust Profile

Figure 8 shows the evolution of the design for this case.  Eight and nine pointed star grain
designs were the “best” during the solution process, and the GA eventually settled on a nine-
pointed star by generation 60.
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Design History for Regressive Thrust Case
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Figure 8.  Evolution of Motor Design for Regressive Thrust Case

Genetic Algorithms in Structures
GA’s applied to structures/structural-dynamics is one of the most popular GA applications.
Composite laminate studies have been popular, and there are too many publications to
mention each one, but there are some worth mentioning.  Venter and Haftka54 used a two
species GA to design composite laminates subjected to uncertainty.  Liu, Haftka, and Akgun
also used GA’s and response surface methods to design composite wing structures.  Other
researchers have also coupled  GA’s to other methods.  Nair and Keane55 coupled GA’s with
approximation techniques to design structures.  Missoum56 et. al have also developed a GA-
based topology tool for designing continuum structures.  Furuya and Lu57 recently combined
GA’s and neural networks to produce optimal structural designs.  On the space side, Bishop
and Striz58 used GA’s to design vibration suppression systems in space structures.

Genetic Algorithms in Scheduling/Control
GA’s have been applied to the problem of Air Traffic Control several times over the years.
Perhaps most recently, GA’s have been used to help controllers get the information they
need in an optimal way to help do their jobs better.  Shaviv and Grunwald59 were responsible
for this work, which focused on air traffic control displays.  Communications is certainly an
area where GA’s have merit.  Frayssinhes60 recently showed how GA’s can produce good
satellite constellation geometries, which has a variety of applications beyond just
communications.  A couple of “directly applicable” non-aerospace applications are worth
mentioning also.  In one case, U.S. West61 found that laying fiber optic cable, which is
usually done based on experience and intuition, can be more efficiently done using a genetic
algorithm.  During the genetic algorithm process, cable networks that require more cable die
and ones that require less cable survive.  The end result is that network design cycle times
has been cut from two months to two days, saving U.S. West $1 million to $10 million per
network.  Texas instruments61, also unleashed a genetic algorithm on a computer chip design
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problem and the algorithm came up with a design that required 18 percent less space, using a
cross connection strategy that no human had thought of.  These two diverse examples show
that GA’s can be used to support the components that help overall aerospace systems
function better and more efficiently.

Genetic Algorithms in Flight Test Data Extraction
Another growth area for GA’s is extracting information from flight test data.  Wollam,
Kramer, and Campbell62 recently showed that it is possible to do reverse engineering of
foreign missiles given these kinds of data.  Another significant growth area for GA’s
concerns simulation validation and verification.  As test budgets shrink and the use of
Modelling and Simulation grows, model verification becomes increasingly important.  One
example worth mentioning was recently done by Anderson63.  In basic terms, verification of
launch/jettison performance predictions requires implementation of accurate mathematical
models of the weapon aerodynamics, the aircraft interference flowfield contributions, the
ejector performance, the flight control system, and knowledge of the actual flight conditions
at launch. The aerodynamic math models typically include coefficients or parameters whose
numerical values must be determined or estimated for the various flight conditions of
interest. Values for these parameters are obtained from wind tunnel tests, analytical or
numerical methods, and flight test observations. Wind tunnel tests are usually conducted on
scaled models of the actual vehicle of interest and in a simulated flight environment,
characterized by non-dimensional parameters such as Mach number and Reynolds number
for typical weapon delivery flight conditions. The extent of representation of the physical
phenomena in the describing algebraic or differential equations limit analytical and
numerical methods. Flight-testing provides the actual environment of interest, but
aerodynamic loads are usually not measured directly but rather inferred or estimated based
on measurements of the dynamic motion of the vehicle in response to either naturally or
intentionally induced disturbances.

A number of parameter estimation methods, such as maximum likelihood, linear regression,
and Kalman filter, among others, have been applied to flight data analyses64,65,66.  The
methods are based on the assumption that a correct math model of the aerodynamic loads
acting on a vehicle will produce six degree-of-freedom (6-DOF) simulation results which
closely match the observed data, with goodness of the model judged by the goodness of
representation of the observed data. Consideration must be given to the fact that the
observations usually contain measurement noise which cannot be exactly replicated in the
simulation. The common approach is to seek to minimize in a least-squares sense the
difference between the observed and predicted flight behavior at discrete times along the
vehicle trajectory. Iterative procedures are usually invoked, beginning with initial estimates
of the parameters, to modify the parameter estimates until convergence is achieved. Two
sources of error need to be recognized in this approach; namely, (1) the modelling error in
representing the fidelity of the dynamic equations governing the physical motion of the
vehicle, and (2) the measurement errors associated with the observations of the vehicle
motion itself. The quality of parameters extracted from any identification method can
degrade in the presence of either of these error sources.  In order to gain confidence in a
simulation, however, it important for the simulation to be able to mimic the flight test data as
closely as possible.  Generally this comparison is done in the basic six degrees of freedom
(yaw, pitch, roll, x, y and z).  If a set of parameters cannot be found that causes the
simulation to mimic the flight test data, this situation leads to an overall lack of confidence
in the simulation.

For many flight vehicle configurations, a general form of the appropriate math model can be
derived from knowledge of the vehicle shape and flight conditions, such as Mach number,
altitude, and expected angle of attack range. The model may consist of explicit analytical
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functions, implicit functions requiring the solution of differential equations, or look-up
tables, but will, in general, contain a finite number of parameters, the values of which need
to be deduced from the measured information. With noise included in the measurements,
uniqueness of the parameter set is not guaranteed for a minimum error solution, since, in
general, different combinations of parameters may produce solutions having equivalent,
least-squares differences relative to the data. In fact, local minima may exist in the search
space, making convergence to a true minimum difficult for many traditional, gradient-based
methods if the initial parameter estimates are of poor quality.  A genetic algorithm has
shown that it can provide good parameter estimates67.

To better gauge how well the new post-flight analysis approach works, it will be compared
directly against a “hill climbing” gradient optimization approach.  Gradient methods have
been the standard way to perform optimization problems such as this one for many years.
However, for highly non-linear optimization problems, the advantages of this new approach
will become readily apparent.

Figure 9 shows the Euler pitch angle history for the hill climber and the genetic algorithm
compared to flight test data.  The hill climber obviously got stuck in a local optima and did
not compare nearly as well with the flight test data than the genetic algorithm.  Forgetting
the genetic algorithm comparison for a moment, it could be said that the hill climber
captured the right “trend”.  Engineers often talk about trend comparisons with the actual
comparisons are not as good as they would like.

The yaw angle history plot, Figure 9, shows much better performance by the hill climber,
however, it is still not as good as the genetic algorithm.  Both methods provide very
reasonable yaw behavior for the vehicle.

Figure 11 shows the roll angle comparison.  The hill climber missed the initial roll to the
right and lacked overall trend performance.  The genetic algorithm mimicked the flight test
data very well.  Even the fairly complex roll motion (right-left-right) is captured nearly
exactly.

The trajectory of the vehicle (see reference) was captured very well by the genetic algorithm.
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The gains evidenced by the genetic algorithm are not, however, without cost.  The hill
climber found its answer in roughly 500 simulation runs (roughly 2 hours of CPU time).
The genetic algorithm answer was generated in 50,000 simulation runs (500 generations with
100 members per generation).

Conclusions
As all these applications show, GA’s have made significant contributions to the aerospace
field.  They have shown themselves to be superior to traditional design and analysis tools
when complicated non-linear phenomena dominate the optimization space.  The growth in
the published applications of GA’s shows that they are growing in popularity as design
teams see their power.  GA’s have secured a significant role for themselves in future
aerospace work.  The conceptual design studies referenced in this paper show that they are
capable of “system-level” optimization, and with the inclusion of additional considerations
such as financial return or manufacturing suitability it is probable that GA’s will become a
tool for aerospace companies to use to gain a competitive edge.
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1 Introduction

Aerodynamic shape design is a challenging application for modern computational fluid dynamic. This is, in-
deed, a very productive field, both in term of scientific publications and developed applications. Furthermore
it is possible to find excellent analysis/design software released in the public domain (See for example [1, 2]).
However, industry, in particular automotive and aerospace, but also emerging fields like wind and sea extracted
energy, continuously needs increased product performance and competitiveness. This requires increasingly re-
fined, advanced and complex computational models capable of describing flow behavior with higher and higher
fidelity.

Thus the design tools available to scientist and engineers are challenged by the growing complexity of sim-
ulation models. The increasing price to performance ratio of nowadays computers is a strong allied of designers
in this though race, but often it is not enough.

Objectives of this lecture is to explore and analyze some of the technologies that, together with the increas-
ingly available computational power, may help to exploit the tremendous potential of high fidelity flow field
models to aerodynamic shape design challenges.

For the sake of simplicity we will concentrate on aerofoil design. Two aspects will be considered: the com-
puter algebra assisted development of code related to gradient computation through adjoint techniques and the
use of fitness approximation techniques to improve the performance of search procedures. The concern of this
first lecture will be more methodological, while some applications will be illustrated in the next one.

The outline of the first first part of this lecture is as follows: some short remarks on adjoint problems will
introduce the framework in which the Computer Algebra techniques will be mainly used here. Then a brief
outline of symbolic computation systems will be given, with particular reference to the features that are here used
for adjoint equation derivation. The implemented algorithm will be described and illustrated with an example
on a simple problem. The adjoint and the related boundary conditions for 3D Navier-Stokes are then reported,
while an example of derivation is given in appendix A.

The second part of this lecture will focus on the use of approximated fitness evaluators. The problem will
be analyzed using the framework of multi-objective optimization, and some possible approaches to the problem
of mixing exact and approximated evaluations will be discussed.

2 Adjoint formulation for gradient evaluation

The adjoint formulation appears in optimal control theory as a tool to compute the constrained gradient to a
given functional. In fluid mechanics the applications span from shape design to flow control [3, 4, 5, 6]. The
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adjoint method is based on the solution of an additional set of equations for the Lagrange multipliers. The La-
grange multipliers local value is a measure of the functional sensitivity to the flow variables local variation. This
provides, for example, a quantitative criteria for grid refinement [7].

In mathematical terms the adjoint approach to gradient computation can be concisely derived from the La-
grange identity:

(Av,w) = (v, A∗w) (1)

where ( , ) is the scalar product in the appropriate Hilbert space. This identity defines the adjoint operator
A∗ when a linear or non-linear operator A and when v ∈ D, w ∈ D∗ are given. Now, if

J = (p, v) (2)

is a given functional and

Av = f, A∗w = p (3)

are, respectively, the state and the adjoint equations, then it is possible to write

J = (p, v) = (f, w) (4)

as a direct consequence of identity 1. This means that J can be expressed either in terms of the state vector v or
in terms of the adjoint one w. The small perturbations theory can then be used to obtain the functional variation
for non-linear state equations. In general, if A(v) is an operator that depends non-linearly on v, it is possible to
write, under the hypothesis of small perturbations, that

f = f0 + εf1 + . . .

v = v0 + εv1 + . . .

A(v0 + εv1 + . . .) = A(v0) + ε
dA

dv

∣∣∣∣
0

v1 + . . .

(5)

Therefore the non-linear state equationA(v)v = f can be decomposed as follows

A(v0)v0 = f0

A(v0)v1 +

(
dA

dv

∣∣∣∣
0

v1

)
v0 = f1

(6)

From the last equation descends immediately the first order linearized operator:

A1(v0)• = A(v0) •+

(
dA

dv

∣∣∣∣
0

•
)
v0 (7)

In the same way, it is possible to write the functional J as

J = J0 + εJ1 (8)

where

J0 = (v0, p) = (w0, f0)

δJ = J1 = (v1, p) = (w1, f1)

with A∗1(v0)w1 = p

(9)

In other words we obtain explicitly the functional variation with respect to the right hand side (RHS) of the
governing equation, i.e., the gradient of J with respect to f . Hence, from a mathematical point of view, the
derivation of the adjoint state equations for a given functional J is a straightforward process. A disadvantage of
this method is that complicated functionals often require a lengthy and error-prone manual derivation and hand
coding process. In this respect Computer Algebra (CA) techniques can be profitably used to ease and speed-up
this process. In the following sections such technique will be described and then used to automatically obtain
the adjoint equations and pertinent boundary conditions of the Navier-Stokes equations. Gradient expression is
also automatically computed for a generic objective function. A standard computer algebra language (MAPLE
[8]) is used to build the automated derivation procedure.
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3 Automatic derivation of the adjoint system and gradient

3.1 General remarks on symbolic computation

Computer algebra systems for symbolic computation have a number of peculiarities that make them radically
different from numeric computing tools. Indeed, they operate on symbols (the rich set of mathematical objects),
rather than numbers as classic numerical programming languages. The mathematical objects are transformed
following exact equivalence rules, and there are not precision limits in the representation of numbers. The al-
gebraic manipulation algorithms can be very complex and sophisticated so that a computer algebra language
can be considered a way of storing and efficiently using the knowledge and expertise of thousands of brilliant
mathematicians. This allows an easy and straightforward use of computer algebra systems as “scratchpad” tools
in the interactive solutions of complex mathematical problems.

On the other hand, there are some drawbacks that have to be taken into account when developing complex
applications. In particular, there are cases in which the output is very complex, and considerable effort has to
be devoted to keeping it easily understandable. Furthermore, it has to be also considered that it is not easy to
learn how to write efficient code in a computer algebra language, because the programming model is fundamen-
tally different with respect to “numerical programming”, with recursion, list and set operations, and expression
identification and and matching on a complex and rich set of objects.

The approach followed in the present work was the research of a compromise between output conciseness
and ease of implementation, and the main steps of the developed adjoint equation derivation procedure can be
summarized as follows:

• The Navier-Stokes equations have been specified term by term, but the volume and surface integrals of
the Lagrangian have been left unexpanded.

• The classical manipulations for adjoint derivation were obtained using Green formulas, while the variation
with respect to geometry were obtained through Hadamard formulas.

This approach required the capability of discriminating between the various possible structures of a given La-
grangian, in order to apply the proper transformations. This was obtained applying recursively the pattern match-
ing functions of the CA system.

3.2 Adjoint computation

We provide here expressions and identities that will be useful for the automatic computation of the integral vari-
ations by the MAPLE V computer algebra system [8].

The first step in the automated derivation process is the expression of the flow field equation in indexed form,
using, in the present implementation, the Grtensor software [9] for tensor calculus. The expanded equation and
boundary conditions, referenced as R, are then combined with the objective function O to form the Lagrangian
equation

L =

∫∫

Σ(h)

O(x, . . . , u, ux, uy, uz, uxx, uxy, . . . , h, . . .) dσ +

∫∫∫

Ω(h)

λR(x, . . . , u, ux, uy, uz, uxx, uxy, . . . , h, . . .) dΩ (10)

The adjoint equations and boundary conditionsare obtained computing the variation ofLwith respect to the flow
field unknownsu, while the gradient has been computed through the variation ofL with respect to the boundary
defining functions h. The formulas used for the variation of volume and surface integrals are reported in the
following sections. One of the tricky aspects of this approach is that the variation of L has to be computed with
respect to quantities that are, in turn, functions of the coordinates x, y and z. In fact, standard MAPLE differ-
entiation function is unable to perform variational calculus. Yet, there are ways to get around such a difficulty,
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for example using the pdiff [10] function, available in MAPLE V share library. Such function enables the
computation of expressions such as

∂f(x, u(x))

∂u(x)

that are not computable with the standard MAPLE differentiation function. The Green’s theorem is then repeat-
edly applied to move the terms containing the derivative of a variation from the volume terms to the surface
integral terms. MAPLE pattern matching functions have been extensively used both for the variation procedure
and the Green’s theorem procedure implementation.

3.3 Symbolic computation algorithm

Given the Lagrangian expression, in the following we give some details about the algorithm used to obtain the
adjoint equations, the boundary conditions, and the gradient expression. The derivation of the formulas adopted
to express the variation of the functionals is reported in appendix B.

The first MAPLE function implemented is called variation. This function takes as input a generic func-
tionalL, a function u to be variated and eventually the vector function h that defines the geometric deformation.
In general, the expansion obtainable for a generic variation is of the kind

δLu(x, . . . , u, ux, uy, uz , uxx, uxy, . . . , h, . . .) =

∂L

∂u
δu+

∂L

∂ux
δux +

∂L

∂uy
δuy +

∂L

∂uz
δuz +

∂L

∂uxx
δuxx +

∂L

∂uxy
δuxy (11)

When the variation is computed with respect to the geometry, a pattern matching algorithm checks each term of
the functionalL in order to find volume or surface integrals. In the case of a surface integral, then the following
expression is used to compute the variation:

δF =

∫∫

S

∇f · ∂h

∂g
δg dσ +

∫∫

S

fH · ∂h

∂g
δg dσ +

∫∫

S

∂f

∂g
δg dσ (12)

Appendix sub-section B.1 reports the derivation of this expression and the meaning of the terms involved. In
the case of volume integrals, the formula

δF =

∫∫∫

T

∂f

∂g
δg dV +

∫∫

FT

f
∂h

∂g
· n δg dσ (13)

is adopted. Expression derivation and terms definition are in B.3. These formulas are exactly equivalent to the
Hadamard formulas. It is worth to remark here that volume and surface integrals, need special treatment only
when the integration manifold is given in implicit form. In the other cases they can be reduced to equivalent
double and triple definite integrals and treated with formula 11.

The second MAPLE function implemented is called intparts3d. The input to this function is the vari-
ated functional δL, and in output an equivalent form of the functional δL is generated, were the terms contain-
ing derivatives of the variation are moved to surface integrals. It works applying recursively the integration by
parts and the Green’s theorem to the volume integral terms containing derivatives of the variation, e.g. δux or
δuxy . The resulting functional variation presents terms containing derivatives of the variation only inside sur-
face integrals. In a subsequent step, these terms can be eliminated through the imposition of suitable boundary
conditions. This last step, currently, is not automated and require some care and attention on the part of the
user. To help this process, the functions extract adj eq and extract adj bceq have been introduced.
They extract the adjoint equations and boundary conditions, respectively, again by pattern recognition. Finally,
two interface procedures, compute adj eq and compute adj eq bc, heve been introduced to manage the
whole process of adjoint equation and boundary conditions derivation. The listing in MAPLE code of the first
one is reported below.
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compute_adj_eq :=
proc(lagrangian, v, dv, n_intp, h, verbose_level, aliasing::boolean)
option remember;
local lg_v, i, c1, sp, adj_eq;

lg_v := variation(lagrangian, [v=v+dv], h, [s1, s2], [x1, x2, x3]);
lg_v := expand(lg_v);
if aliasing then autoAlias(lg_v) fi;
if verbose_level >= 2 then print("LAGRANGIAN"); print(lg_v) fi;
c1 := lg_v;
for i from 1 by 1 to n_intp do

c1 := intparts_3d(c1,dv);
c1 := expand(convert(c1,diff));
if aliasing then autoAlias(c1) fi;
if verbose_level >= 1 then

print("INTEGRATION BY PARTS N.", i); print(c1)
fi;

od;
adj_eq := extract_adj_eq(c1,dv);

end:

The equations obtained by the automated procedure are of course less concise compared to those obtained
manually. Indeed, the governing equations are fully expanded as a first step in the variation computation, to
ease the pattern matching process. Furthermore, the comparison, useful for debug purposes, with the manually
obtained equations is complicated by some asymmetries that may be found in the automatically derived terms.
This is due to the following identity (see sub-appendix B.4 for details):

∫∫∫

Ω

vxy dΩ =

∫∫

Σ

vxn2 dΣ =

∫∫

Σ

vyn1 dΣ (14)

This comes from the application of the divergence theorem to terms containing crossed derivatives. Indeed, the
theorem can be applied here in two different ways, and the automatic procedure does not know which form has
to be chosen to keep symmetry. However, the same identity 14 can be applied to suitably transform the obtained
expressions.

3.4 A simple application example to potential flows

An example of adjoint equation derivation is here given to show how the developed MAPLE code may be used.
The reader may refer to appendix A for the application to Navier-Stokes equations.

A symmetric airfoil is immersed in a potential flow at zero angle of attack (see figure 1), and a symmetric
transpiration velocityW is assigned in the direction normal to the airfoil surface. The governing equations are
therefore:

∇2φ = 0 in the field, ∇φ · n = W on the airfoil (15)

The problem is to find a transpiration velocity distributionW ∗ such that a given target potential Φ is matched.
Hence the objective function that will be minimized is:

1

2

∮
(φ− Φ)2 dσ (16)

on the airfoil surface. The current version of adjoint derivation code was developed taking into account three-
dimensional fields; therefore in the following example, the two-dimensional field will be treated as 3D field with
zero gradient of the flow variables in x3 direction. In the same spirit the airfoil is a cylindric surface identified
by two curvilinear coordinates s1, s2. Thus we will have surface integrals instead of contour integrals on the
boundary and volume integrals in the field.
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W = ∇φ · n

V∞

Figure 1: 2D symmetric potential flow with blowing.

Here the MAPLE interactive session for the adjointcomputation follows. Thealias_dependencies
function set a functional dependence for a given list of variables; dW is the increment of the blowing ve-
locity, y is the airfoil ordinate, x1, x2, x3 are the field coordinates, while s1, s2 are the surface coordinates.
Note that to have the procedure working properly, we had to specify explicitly the dependence of φ and of
its increment dφ on field and surface coordinates. The same dependence is specified for the vector normal
to the airfoil surface n = [n1, n2, n3] and for the deformation field h = [h1, h2, h3] (not explicitly used
here).

> alias_dependencies([y,W,dW],[s1]):

> varlist := [x1,x2,x3,s1,s2]:

> alias_dependencies([phi,dphi,n1,n2,n3,h1,h2,h3],varlist):

> alias_dependencies([Phi],[s1,s2]):

> Obj:=Int(Int(1/2*(phi-Phi)ˆ2,s1),s2);

Obj :=

∫∫
1

2
(φ− Φ)2 ds1 ds2

> Potential_eq:=diff(phi,‘$‘(x1,2))+diff(phi,‘$‘(x2,2)):autoAlias(%);

φx1 , x1 + φx2 , x2

> n:=[n1,n2];

n := [n1 , n2 ]
> Neumann_bc:=dotprod(grad(phi,[x1,x2]),n,’orthogonal’)-W:
> autoAlias(%);

φx1 n1 + φx2 n2 −W

> alias_dependencies([eta,beta],varlist):
> Lagrangian:=Obj+Int(Int(Int(eta*Potential_eq,x1),x2),x3)+
> Int(Int(beta*Neumann_bc,s1),s2);

Lagrangian :=

∫∫
1

2
(φ− Φ)2 ds1 ds2 +

∫∫∫
η (φx1 , x1 + φx2 , x2 ) dx1 dx2 dx3

+

∫∫
β (φx1 n1 + φx2 n2 −W) ds1 ds2

> adj_dphi:=compute_adj_eq(Lagrangian,phi,dphi,2,[h1,h2,h3],0,true);

adj dphi := ηx1 , x1 + ηx2 , x2

> adj_dphi_bc:=compute_adj_bc(Lagrangian, phi, dphi, 2, [n1, n2, n3],
> [h1, h2, h3], 0, true);

adj dphi bc :=

φ− Φ +
η dphi x1 n1

dphi
− ηx1 n1 +

η dphi x2 n2

dphi
− ηx2 n2 +

β n1 dphi x1

dphi
+
β n2 dphi x2

dphi
> adj_dphi_bc_airf:=subs(beta=-eta,adj_dphi_bc);
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adj dphi bc airf := φ− Φ− ηx1 n1 − ηx2 n2

> c6:=variation(Lagrangian,[W=W+dW],[s1,y,s2],[s1,s2],[x1,x2,x3]);

−
∫∫

β dW ds1 ds2

In the above equation the gradient with respect to the blowing velocityW can be recognized as being given
by the variation of the Lagrangian with respect toW .

4 The compressible Navier Stokes Adjoint Equations

In this section the mathematical adjoint to the Navier-Stokes equations are derived. The notation is slightly
different from that of the previous chapter for the sake of conciseness and clarity. In particular, the variations
will be indicated with a circumflex accent.

4.1 State equations

In this section we make the notation clear by giving the steady compressible Navier-Stokes equations under
divergence form and indicial notation.

Conservation of mass

∂ρvi
∂xi

= 0 (17)

Conservation of momentum

∂

∂xj

{
ρvivj + pδi j − µ

[
∂vi
∂xj

+
∂vj
∂xi
− 2

3

∂vk
∂xk

δi j

]}
= 0 (18)

Conservation of energy

∂

∂xi

{
ρviH − k

∂T

∂xi
− µ

[
∂vi
∂xj

+
∂vj
∂xi
− 2

3

∂vk
∂xk

δi j

]
vj

}
= 0 (19)

H is the total enthalpy per unit mass, k the heat conductivity, and the other symbols have their usual meaning.
Let Ω be the flow domain and Σ its surface. The no-slip boundary conditions are imposed on Σ, elsewhere

we consider suitable far field conditions. The boundary condition on temperature is to be detailed later.

4.2 Lagrangian

I is a generic functional depending on the flow field and it is defined either over Ω or over Σ. We want to find
a surface Σ such that the first order variation of I with respect to a perturbation of Σ is zero.

To this end, we introduce an auxiliary functionalL defined as follows

L = I +

∫

Ω

η
∂ρvi
∂xi

dΩ

+

∫

Ω
λi

∂

∂xj

{
ρvivj + pδi j − µ

[
∂vi
∂xj

+
∂vj
∂xi
− 2

3

∂vk
∂xk

δi j

]}
dΩ

+

∫

Ω
ζ
∂

∂xi

{
ρviH − k

∂T

∂xi
− µ

[
∂vi
∂xj

+
∂vj
∂xi
− 2

3

∂vk
∂xk

δi j

]
vj

}
dΩ

+

∫

Σ
ξivi dΣ

+

∫

Σ
τΘ(T ) dΣ (20)
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Θ(T ) = T − Tw with prescribed boundary temperature, whereas for adiabatic flows Θ(T ) = ∂T/∂xini.
The auxiliary functions η, λi and ζ belong to H2(Ω). ξ ∈ L2(Σ) and τ ∈ L2(Σ) or τ ∈ H1(Σ) according to
the boundary conditions selected for temperature. We refer to all these functions as Lagrange multipliers.

The lagrangian functionL transforms the constrained problem defined for I into an unconstrained problem:
it is now required to find the flow field, Σ and the Lagrange multipliers in order that the respective first order
variations of L are zero. The variation of L with respect to the Lagrange multipliers yields the flow equations
and boundary conditions. We concentrate on the variation of L with respect to the conservative flow variables
ρ, ρvi, ρE, withE the total energy per unit mass.

Take the variation of the first integral in eq. 20, using the Gauss identity we have

∫

Σ

η ρ̃vi ni dΣ−
∫

Ω

ρ̃vi
∂η

∂xi
dΩ (21)

where ni is the outward unit normal to Σ, and ·̃ denotes the function variation.
Consider now the second integral in eq. 20 and apply the Gauss identity twice to get

∫

Σ
λifi dΣ−

∫

Ω
(ρvivj + pδi j)

∂λi
∂xj

dΩ−
∫

Ω

∂

∂xj

{
µ

[
∂λi
∂xj

+
∂λj
∂xi
− 2

3

∂λk
∂xk

δi j

]}
vi dΩ

+

∫

Σ
µ

[
∂λi
∂xj

+
∂λj
∂xi
− 2

3

∂λk
∂xk

δi j

]
vinj dΣ (22)

where the components of the force per unit surface experienced at the boundary are

fi =

{
ρvivj + pδi j − µ

[
∂vi
∂xj

+
∂vj
∂xi
− 2

3

∂vk
∂xk

δi j

]}
nj

To be remarked is that the linear second order adjoint operator keeps the same form of the viscous stresses.
In eq. 22 the flow variables do not appear under the form of conservative variables. However, in the first

integral, for a reason that will be clear later, we leave the flow variation under the form f̃i, while in the others
we write the variations in terms of conservative variables. For example we have

ρ̃vivj = ρ̃vivj + ρ̃vjvi − vivj ρ̃

ṽi =
1

ρ
ρ̃vi −

vi
ρ
ρ̃

p̃ =
γ − 1

2
(2 ρ̃E − 2 ρ̃vivi + V 2ρ̃)

T̃ =
γ − 1

2ρR

[
2 ρ̃E − 2 ρ̃vivi +

(
V 2 − 2R

γ − 1
T

)
ρ̃

]

ρ̃viH = ρ̃viH + γviρ̃E − (γ − 1)viρ̃vjvj + vi

(
γ − 1

2
V 2 −H

)
ρ̃

with γ the specific heats ratio, R the perfect gas constant and V 2 = vivi. Substituting the above relations in
eq. 22 and posing

hi =
∂

∂xj

{
µ

[
∂λi
∂xj

+
∂λj
∂xi
− 2

3

∂λk
∂xk

δi j

]}
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one finds ∫

Σ
λif̃i dΣ−

∫

Ω

[
vj
∂λi
∂xj

+ vj
∂λj
∂xi
− (γ − 1)vi

∂λj
∂xj

+
hi
ρ

]
ρ̃vi dΩ

−
∫

Ω

(
γ − 1

2
vjvj

∂λi
∂xi
− vivj

∂λi
∂xj
− 1

ρ
vihi

)
ρ̃ dΩ

−
∫

Ω
(γ − 1)

∂λi
∂xi

ρ̃E dΩ +

∫

Σ
µ

[
∂λi
∂xj

+
∂λj
∂xi
− 2

3

∂λk
∂xk

δi j

]
ṽinj dΣ (23)

The third integral in eq. 20 is rearranged as above to get
∫

Σ
ζe dΣ−

∫

Σ
k ζ

∂T

∂xi
dΣ−

∫

Ω
ρviH

∂ζ

∂xi
dΩ−

∫

Σ
k T

∂ζ

∂xi
ni dΣ +

∫

Ω
T
∂

∂xi

(
k
∂ζ

∂xi

)
dΩ

+

∫

Ω

µ
∂ζ

∂xi

[
∂vi
∂xj

+
∂vj
∂xi
− 2

3

∂vk
∂xk

δi j

]
vj dΩ (24)

with

e =

{
ρviH − µ

[
∂vi
∂xj

+
∂vj
∂xi
− 2

3

∂vk
∂xk

δi j

]
vj

}
ni

The variation of eq. 24 is complicated by the presence of non-linear terms involving both the vj and the
derivatives. As a first step, we write the variation of eq. 24 as

∫

Σ
ζẽ dΣ−

∫

Σ
k ζ

∂T̃

∂xi
ni dΣ−

∫

Ω
ρ̃viH

∂ζ

∂xi
dΩ +

∫

Σ
k T̃

∂ζ

∂xi
ni dΣ−

∫

Ω
T̃
∂

∂xi

(
k
∂ζ

∂xi

)
dΩ

+

∫

Ω

{
µ
∂ζ

∂xi

[
∂vi
∂xj

+
∂vj
∂xi
− 2

3

∂vk
∂xk

δi j

]
− ∂

∂xi

[
µ

(
vj
∂ζ

∂xi
+ vi

∂ζ

∂xj
− 2

3
vk

∂ζ

∂xk
δi j

)]}
ṽjdΩ

+

∫

Σ
µni

(
∂ζ

∂xj
vi +

∂ζ

∂xi
vj −

2

3

∂ζ

∂xk
vkδi j

)
ṽj dΣ (25)

Leaving unchanged the terms on the boundary and expressing the other variations in terms of the conserva-
tive variables variations, the equation above finally becomes

∫

Σ
ζẽ dΣ−

∫

Σ
k ζ

∂T̃

∂xi
dΣ +

∫

Σ
k T̃

∂ζ

∂xi
ni dΣ +

∫

Σ
µni

(
∂ζ

∂xj
vi +

∂ζ

∂xi
vj −

2

3

∂ζ

∂xk
vkδi j

)
ṽj dΣ

+

∫

Ω

{
[(γ − 1) vivj −Hδi j ]

∂ζ

∂xi
+
γ − 1

ρR
vi

∂

∂xi

(
k
∂ζ

∂xi

)
− gj
ρ

}
ρ̃vj dΩ

+

∫

Ω

[
gjvj
ρ
− γ − 1

2ρR

(
V 2 − 2R

γ − 1
T

)
vj

∂

∂xi

(
k
∂ζ

∂xi

)
−
(
γ − 1

2
V 2 −H

)
vi
∂ζ

∂xi

]
ρ̃ dΩ

−
∫

Ω

[
γ − 1

ρR

∂

∂xi

(
k
∂ζ

∂xi

)
+ γvi

∂ζ

∂xi

]
ρ̃E dΩ (26)

where

gj =

{
∂

∂xi

[
µ

(
vj
∂ζ

∂xi
+ vi

∂ζ

∂xj
− 2

3
vk

∂ζ

∂xk
δi j

)]
− µ ∂ζ

∂xi

[
∂vi
∂xj

+
∂vj
∂xi
− 2

3

∂vk
∂xk

δi j

]}

Note the self-adjointness of the linear part. The variations of the last two integrals in eq. 20 are easily com-
puted as

∫

Σ
ξiṽi dΣ (27)

∫

Σ
τΘ̃ dΣ (28)

where Θ̃ = T̃ or Θ̃ = ∂T̃/∂xini. It is now completed the variation of eq. 20. Consider all the field integrals
and factor out the conservative variables variation.
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4.3 Adjoint equations and boundary conditions

In order to be

L̃ = 0 ∀
{
ρ̃, ρ̃vi, ρ̃E

}

the following equations are to be satisfied

−γ − 1

2
vjvj

∂λi
∂xi

+ vivj
∂λi
∂xj
−
(
γ − 1

2
V 2 −H

)
vi
∂ζ

∂xi
+
vj(hj + gj)

ρ
−
(
γ − 1

2ρR
V 2 − T

ρ

)
∂

∂xi

(
k
∂ζ

∂xi

)
= 0

(29)

[(γ − 1) vivj −Hδi j ]
∂ζ

∂xj
− ∂η

∂xi
− vj

∂λi
∂xj
− vj

∂λj
∂xi

+ (γ − 1)vi
∂λj
∂xj
− hi + gi

ρ
+
γ − 1

ρR
vi

∂

∂xi

(
k
∂ζ

∂xi

)
= 0

(30)

−(γ − 1)
∂λi
∂xi
− γvi

∂ζ

∂xi
− γ − 1

ρR

∂

∂xi

(
k
∂ζ

∂xi

)
= 0 (31)

These are the compressible Navier-Stokes adjoint equations. The boundary conditions to be satisfied by such
equations are determined by considering the boundary terms of L̃. We focus on wing-like geometries, such that
in the far field the flow is considered unperturbed, and the no-slip boundary condition is applied on a finite closed
surface. In this respect L̃ depends on the boundary terms left in eqs. 21, 23, 26, 27, 28, once the field integrals
are elided by satisfying the adjoint equations. We are left with

L̃ = Ĩ +

∫

Σ
λif̃i dΣ +

∫

Σ
η ρ̃vini dΣ +

∫

Σ
ζẽ dΣ− k

∫

Σ
ζ
∂T̃

∂xi
ni dΣ + k

∫

Σ
T̃
∂ζ

∂xi
ni dΣ +

∫

Σ
τΘ̃dΣ

+

∫

Σ

[
ξi + ηρni + µ

(
∂λi
∂xj

nj +
∂λj
∂xi

nj −
2

3

∂λj
∂xj

ni + nj
∂ζ

∂xi
vj + nj

∂ζ

∂xj
vi −

2

3
ni
∂ζ

∂xj
vj

)]
ṽi dΣ (32)

Suppose we give a certain wall temperature. Then Θ̃ = T̃ , and therefore by taking

ζ = 0 and τ = −k ∂ζ
∂xi

ni Prescribed wall temperature (33)

on Σ, the boundary integrals involving T̃ = 0 and ∂T̃∂xi are eliminated. In contrast, the adiabatic wall
corresponds to Θ̃ = (∂T̃/∂xi)ni, and hence if

∂ζ

∂xi
ni = 0 and τ = kζ Adiabatic wall (34)

on Σ, the respective boundary integrals are eliminated as in the previous case. As vi = 0 on the solid walls, we
have remarkable simplifications for ẽ:

ẽ =

{
ρHni − µ

[
∂vi
∂xj

+
∂vj
∂xi
− 2

3

∂vk
∂xk

δi j

]
nj

}
ṽi

Also the third term in 32 is 0 and if we take

ξi = −
[
ρHni − µ

(
∂vi
∂xj

+
∂vj
∂xi
− 2

3

∂vk
∂xk

δi j

)
nj

]
ζ − µ

(
∂λi
∂xj

+
∂λj
∂xi
− 2

3

∂λk
∂xk

δi j

)
nj − ρniη (35)
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we are left with

L̃ = Ĩ +

∫

Σ
λif̃i dΣ (36)

where f̃ is the variation of the force per unit surface acting on the fluid at the boundary.
Such variation is unconstrained, and there are two different ways to elide the two terms left in the equation

above. The first is that Ĩ can be put under the form

Ĩ =

∫

Σ
Jif̃i dΣ (37)

so that taking

λi = −Ji (38)

the variation of the lagrangian is finally zero. In turn this condition shows how the only allowable surface cost
functionals are those involving fi, as other functionals will not lead to L̃ = 0. For a deeper discussion see [11].

Otherwise, if I is a field integral then

Ĩ =

∫

Ω

J{ρ̃, ρ̃vi, ρ̃E}f̃ dΩ (39)

where in this case J is the derivative of the integrand with respect to the conservative variables. The three
terms under integral become source terms of the adjoint equations, and by taking λi = 0 on Σ we are left again
with L̃ = 0.

4.4 Gradient

As mentioned, the variation of L with respect to the Lagrange multipliers yields back the governing equations
and boundary conditions, therefore the gradient is simply the variation with respect to the geometry. If I is a
field integral, and if ε ω is variation in the direction of the normal to the boundary, we have

DI =

∫

Ω

∂F

∂ω
ω dΩ +

∫

Σ
Fω dΣ (40)

where F is the integrand of I and ε is small. When I is defined on the boundary we have

DI =

∫

Σ

∂F

∂ω
ω dΣ +

∫

Σ

∂F

∂xi
niω dΣ +

∫

Σ

HF ω dΣ (41)

and H is the local surface curvature.
For the other terms ofL the derivation rules are the same, but some simplifications occur since the governing

and adjoint equations with the respective boundary conditions are satisfied on Σ. The only terms left are those
relative to the boundary terms and the gradient, that is

DL = DI +

∫

Σ

∂ξivi
∂xj

njω dΣ +

∫

Σ

∂τΘ

∂xi
niω dΣ (42)

In the particular case under examination the functional to be minimized is

L = ω1D + ω2
(L− L∗)2

2
(43)

where D is the drag (to be minimized), L is the lift, L∗ is the desired lift and the ωi are weights. Consequently,
the gradient expression is:

δL = ω1

∫

Σ
−
(
−∂p ni∂y δy +

∂τij nj
∂y δy

)
t∞i dΣ+

ω2 (L− L∗)
∫

Σ
−
(
−∂p ni∂y δy +

∂τij nj
∂y δy

)
n∞i dΣ+

∫

Σ
ξi
∂vi
∂y δy dΣ +

∫

Σ
τ ∂Θ
∂y δy dΣ
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5 Use of approximate fitness evaluators

Optimization techniques based on evolutionary computing are very attractive in terms of robustness and global
extremum location capabilities, but these favorable characteristics are obtained to the expense of a rather large
number of fitness evaluations. This is a problem in many engineering applications, where fitness evaluation
often requires a substantial amount of computational resources. This makes attractive the use of approximate
fitness evaluators, with lower computational requirements, whenever it is possible. In aerodynamic optimiza-
tion design, for example, various approaches have been experimented, such as the use of Neural Network-based
interpolators to reduce the number of true flow field evaluations [12]. The mixed use of solvers with different
levels of approximation in a hierarchical organization has also been object of investigation. Both procedures
have advantages and limits. Neural Networks, for example, are able to improve the quality of their approxima-
tion when the number of exact evaluations available increase. Their performance, therefore, may improve in
real time during the optimization process. On the other hand, their more serious drawback is the fast decrease in
approximation fidelity when the parameter space dimension increases [13, 14, 15, 16]. Low fidelity solvers (e.g.
Euler+boundary layer versus Navier-Stokes), do not have this problem, but it is not always easy to understand
the limits of the approximate model. In both cases, the problem that arises is the difficulty of devising a good
and sound strategy to mix and interleave high-fidelity and low-fidelity fitness approximations.

5.1 Problem analysis

A simple analysis of the implications of mixing fitness evaluators with different levels of precision within an
(evolutionary) optimization process is here carried out. This analysis is made using concepts of multi-objective
optimization [17, 18, 19], like Pareto fronts and dominance criteria, even if the class of problems considered
is strictly single-objective. In fact, the relations between the exact function f and its approximated model g is
analyzed with the following two-objective problem:





min f(x), g(x, X0)
x ∈ X
X0 ∈ ℘(X)

(44)

where f(x) ∈ < is the function defined in a domain X ⊆ <n for which we are interested in finding the global
extrema, and g(x, X0) ∈ < is defined in the domain X∗ ≡ X ∪ ℘(X) ; ℘(X) is the power set of X and
X0 ∈ ℘(X) represents a sampling of the domain X . In other terms X0 can be thought as the training set of g,
e.g. the set of point in which f (and possibly its derivatives) are known and their values are used to obtain g.
Let us have, for example, the following function:

f(x) = [x2 − 10 cos(2πx) + 10] x ∈ [−1, 3] (45)

and let g(x) a polynomial of degree 10 that minimizes
∑

xi∈X0

[f(xi)− g(xi)]
2 to best fit f(x) in the least squares

sense for a given training set X0 (see Figure 2).
The Pareto Front related to problem (44), reported here in Figure 3 for function 45 and its approximator, is

useful to understand the relationship between f and its approximating function g.
The training set X0 is, for the moment, supposed fixed and unchanged during the optimization process. In

other words, X0 fixed means that no learning procedure is involved in the approximation process; there are,
instead, two different models, from the beginning of the process, the exact and the approximate one, that can be
used to search the optimum.

When using an approximated model for fitness evaluation, there are two things that have to be taken into
account:

• Shift of extremum points between the two models;

• Value shift between exact and approximate functions.

9-12



-5

0

5

10

15

20

25

30

-1 -0.5 0 0.5 1 1.5 2 2.5 3

f, 
g

x

f(x)
g(x)

Figure 2: f(x) = [x2 − 10 cos(2πx) + 10] and g = best fitting polynomial of degree 10.
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Figure 3: Pareto front of problem 44 with f specified in eq. 45 and g 10th degree polynomial approximator.

The lesser are these shifts in the extremum points, the better and more reliable are optimization results obtained
using the approximate model. Furthermore in these conditions it is safe to interleave exact and approximate
evaluations.

A generic Pareto front of a problem of type (1) is reported in Figure 4. Four different zones can be found,
that are characterized by different behavior of g and f in moving towards their global optimum points. In zone
(I), a solution that dominates the initial one is surely closer to both f and g global minimum points. In zone
(II), a solution that dominates the initial one is closer to the global minimum of f and farther from g global
minimum. Conversely, zone (IV) has an opposite behavior, as a dominating solution leads close to g and far
from f global minimum points. In zone (III), finally, a solution that dominates the initial one is farther from
both global minimum points.
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Given this framework, we want check if there is a particular interleaving strategy that minimizes the number
of exact function evaluations. The obvious limit of this approach is that in a real optimization run the Pareto
front is unknown and only a rough estimate of the collocation of a particular solution in one of the four zones is
possible.

At the beginning of the optimization process the candidate solution (or population) is likely to be in zone
(I). The approximated function g can be safely used here, and only occasional control is needed on f values to
avoid the generation of too many non dominated solutions (relatively to f ).

Zones (II) and (III) are difficult to detect if g global minimum value is unknown. In principle, use of g
without check on f should be avoided in zone (II), as it may lead to unsatisfactory results in terms of f . In zone
(III) both the use of g alone and of g and f interleaved is detrimental, as it would lead to a point in the Pareto
front that would be likely to be far from the global optimum of f .

Zone (IV) is similar to zone (I) from the point of view of searching for the global optimum of f . However,
here interleaving could be detrimental for reaching the global optimum of g.

g

gl
ob

al
 m

in
im

um
f

III

II I

IV

f

global minimumg

Figure 4: Generic Pareto front related to problem 44.

5.2 Possible approaches to mixing exact and approximated evaluations

From a practical standpoint the above considerations suggest the following search strategy:

1. Search the global optimum of g first, eventually checking in very few points if the values of f do not get
worse too much.

2. Search the global optimum of f , eventually using g as second objective if there is interest in finding so-
lutions belonging to the f -g front.

When X0 changes during the optimization process, the approximation g can increase its precision when
more evaluation of f are available. Therefore the Pareto front tends to decrease in size, and after some time it
can reduce to a point.

Devising a good interleaving strategy is here more difficult, however the previous strategy, adapted as fol-
lows, should have an acceptably good behavior:

9-14



1. f is sampled in some points and the resulting values (training set) are used to find a first expression of g.

2. The global optimum of g is searched.

3. A short two-objective (f -g) run is performed and the computed values of f are added to the training set.

4. A new expression of g is found.

5. The process is repeated starting from step 2 until a satisfactory value of f is found.

5.3 Analysis of an example problem

The RAE 2822 airfoil is assigned as starting configuration, and the optimization goal is the reduction of the drag
coefficient cd at given mach (M = 0.78) and lift coefficient cl = 0.60. The maximum airfoil thickness has to
remain unchanged.

A two-objective optimization run is carried out using two different flow solvers:

1. Euler + Boundary layer, interactive (high fidelity solver, objective f ).

2. Full potential, non-conservative formulation (low fidelity solver, objective g).

It is important to observe that these flow solvers represent the real flow at a very different approximation level,
and that a real optimization application would benefit more from the use of more closely related flow solver
models, such as Navier-Stokes and Euler + Boundary layer. The only aim of this run is the analysis of the rela-
tionships between different flow models.

The aerofunctions obtained from the airfoils reported in figure 5 were used to modify the airfoil shape.

airfoil #3 airfoil #4airfoil #1

airfoil #9

airfoil #5

airfoil #2

airfoil #10

airfoil #6 airfoil #7 airfoil #8

airfoil #11 airfoil #12

Figure 5: Airfoils used to build the modification functions.

The GA parameters are:

• bit resolution: 10

• selection method: two-step random walk with elitism

• bit-mutation with 4% rate

• population size: 20

• generations: 20
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Figure 6 reports the Pareto front obtained in the two-objective run. As it can be observed, the Pareto front
shows a sensible difference between the two flow models. These solvers should, therefore, not be used in an
interleaved fashion unless a viscous correction is introduced in the full potential one. However, a hierarchical
use of these solver could be useful to discard very bad solution such as those with a strong shock wave.

The above example may help in tracing the guidelines for the implementation of the hierarchical approach
in an optimizer for viscous flows.

The optimization could be made in two different steps: a pre-optimization phase aimed at the reduction of
the search space complexity, and a subsequent optimization phase that explores this reduced space using a high
fidelity fitness evaluator.

The number of active variables, their variation ranges and a new starting configuration are a possible output
of the first phase. In a more sophisticated approach, using for example a multi-objective GA, the pre-optimiza-
tion can be used to generate an aerofunction basis with a reduced number of elements.

In the second phase, the modification of the geometry could be driven by a very simple evolution strategy,
such as a (1,1)-ES [20, 21] that, due reduction of the search space complexity, should give an improvement of
the objective function in an acceptable number of attempts.

6 Conclusions

It has been shown how computer algebra techniques can be used to obtain the adjoint equations and pertinent
boundary conditions of the Navier-Stokes equations. The obtained equations can be directly used for the adjoint
equations solver coding.
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Figure 6: Euler + Boundary Layer — Full Potential comparison.
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MAPLE was used as computer algebra language, complemented with an original code taking advantage of
public domain libraries for tensor algebra and function variation computation.

Further development will include derivation of the adjoint equations of the Reynolds averaged Navier-Stokes
equations with κ-ε turbulence modeling.

The relationship between an objective function and an approximated form has been investigated using a
Pareto front to show the trade-off between exact and expensive objective function evaluations and inexpensive
but inexact approximations. Approximating the objective function values, if properly done, shortens the time
in time-consuming design problems like those typical of CFD applications. Evolutionary algorithms normally
require more objective function evaluations than other methods and, therefore, are very likely to take advantage
by using such approximation techniques.
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A Example of adjoint NS derivation using MAPLE

For the sake of clarity and conciseness, the output of MAPLE has been slightly modified such that indexed vari-
ables and derivatived such as x1 and v3x2 appear as x1 and v3x2

. Furthermore, we will work only on a piece of
the functional 20, namely the scalar products between the adjoint variables and the state equations. Therefore,
in the output will not appear the terms coming from I . Hence we have the following expanded form:

LG1 :=

∫∫∫
η (ρx1 v1 + ρ v1 x1

+ ρx2 v2 + ρ v2 x2
+ ρx3 v3 + ρ v3 x3

) + λ1 (ρx1 v1
2

+ 2 ρ v1 v1 x1
+ px1 −

4

3
µ v1 x1 , x1

− 1

3
µ v2 x1 , x2

− 1

3
µ v3 x1 , x3

+ ρx2 v2 v1 + ρ v2 x2
v1

+ ρ v2 v1 x2
− µ v1 x2 , x2

+ ρx3 v3 v1 + ρ v3 x3
v1 + ρ v3 v1 x3

− µ v1 x3 , x3
) + λ2

ρx1 v2 v1 + ρ v2 x1
v1 + ρ v2 v1 x1

− µ v2 x1 , x1
− 1

3
µ v1 x1 , x2

+ ρx2 v2
2 + 2 ρ v2 v2 x2

+ px2 −
4

3
µ v2 x2 , x2

− 1

3
µ v3 x2 , x3

+ ρx3 v3 v2 + ρ v3 x3
v2 + ρ v3 v2 x3

− µ v2 x3 , x3
)+

λ3 (ρx1 v3 v1 + ρ v3 x1
v1 + ρ v3 v1 x1

− µ v3 x1 , x1
− 1

3
µ v1 x1 , x3

+ ρx2 v3 v2

+ ρ v3 x2
v2 + ρ v3 v2 x2

− µ v3 x2 , x2
− 1

3
µ v2 x2 , x3

+ ρx3 v3
2 + 2 ρ v3 v3 x3

+ px3

− 4

3
µ v3 x3 , x3

) + ζ(−1

3
v3 µ v1 x1 , x3

− 4

3
v3 x3

2 µ − v2 x3
2 µ+ ρx3 v3 H + ρ v3 x3

H

+ ρ v3 Hx3 − k Tx3 , x3 − v1 x3
2 µ− k Tx1 , x1 −

1

3
v2 µ v1 x1 , x2

− k Tx2 , x2 −
1

3
v2 µ v3 x2 , x3

− v1 µ v1 x2 , x2
− 4

3
v2 µ v2 x2 , x2

− v3 µ v3 x1 , x1
− 1

3
v1 µ v2 x1 , x2

− 4

3
v3 µ v3 x3 , x3

− 1

3
v3 µ v2 x2 , x3

− v1 µ v1 x3 , x3
− v3 µ v3 x2 , x2 −

4

3
v1 x1

2 µ+ ρ v1 Hx1 + ρ v1 x1
H

+ ρx1 v1 H − v3 x1
2 µ − v2 µ v2 x3 , x3

− 2 v2 x1
µ v1 x2

− v2 x1
2 µ +

4

3
v1 x1

µ v3 x3

+
4

3
v1 x1

µ v2 x2
− v2 µ v2 x1 , x1

− 2 v3 x1
µ v1 x3

− 4

3
v1 µ v1 x1 , x1

− 1

3
v1 µ v3 x1 , x3

− 4

3
v2 x2

2 µ − v1 x2
2 µ + ρ v2 Hx2 + ρ v2 x2

H + ρx2 v2 H − v3 x2
2 µ+

4

3
v2 x2

µ v3 x3

− 2 v3 x2
µ v2 x3

)dx1dx2dx3 +

∫∫
ξ1 v1 + ξ2 v2 + ξ3 v3 + τ Θ(T ) ds1 ds2

Now the perfect gas model is introduced in order to close the equation system:

> pexp := p = -1/2*rho*(gamma-1)*(-2*H+v1ˆ2+v2ˆ2+v3ˆ2)/gamma;

pexp := p = −1

2

ρ (γ − 1) (−2H + v1
2 + v2

2 + v3
2)

γ

> Texp := T = -1/2*(gamma-1)*(-2*H+v1ˆ2+v2ˆ2+v3ˆ2)/(gamma*R);

Texp := T = −1

2

(γ − 1) (−2H + v1
2 + v2

2 + v3
2)

γ R

> LG1:=subs({pexp,Texp}, LG1):

The prescribed boundary temperature condition is imposed:

> Theta := (w) -> w- Tw(x1,x2,x3,s1,s2);

Θ := w→ w − Tw(x1 , x2 , x3 , s1 , s2 )

The variation with respect to ρ gives the first adjoint equation:

> adj_drho:=compute_adj_eq(LG1, rho, drho, 2, 0, true);
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−v2 H ζx2 −
1

2

v3
2 λ3 x3

γ
− v2 v3 λ3 x2

− v2 v3 λ2 x3
+
H λ3 x3

γ
+
H λ2 x2

γ
− ηx3 v3 +

λ1 x1
H

γ

− λ1 x1
H − ηx1 v1 −H λ3 x3

− ηx2 v2 +
1

2
v1

2 λ3 x3
− 1

2
v1

2 λ1 x1
+

1

2
v1

2 λ2 x2

+
1

2
v3

2 λ2 x2
+

1

2
λ1 x1

v3
2 +

1

2
λ1 x1

v2
2 +

1

2
v2

2 λ3 x3
− 1

2
v2

2 λ2 x2
− 1

2
v3

2 λ3 x3
−H λ2 x2

− v1 H ζx1 −
1

2

λ1 x1
v2

2

γ
− v1 v3 λ1 x3

− 1

2

v1
2 λ3 x3

γ
− 1

2

v3
2 λ2 x2

γ
− v1 v3 λ3 x1

− 1

2

v1
2 λ2 x2

γ
− 1

2

v1
2 λ1 x1

γ
− ζx3 v3 H −

1

2

v2
2 λ3 x3

γ
− v1 v2 λ1 x2

− v1 v2 λ2 x1

− 1

2

λ1 x1
v3

2

γ
− 1

2

v2
2 λ2 x2

γ

Now the adjoint equations coming from the variations with respect to v1, v2, v3:

> adj_dv1:=compute_adj_eq(LG1, v1, dv1, 2, 0, true);

−ρH ζx1 +
5

3
µ v2 x1

ζx2 − µ ζx3 , x3 v1 −
4

3
µ v1 ζx1 , x1 − µλ1 x2 , x2

− ρ v3 λ1 x3

+ ρ v1 λ2 x2
− ρ v3 λ3 x1

− ρ v1 λ1 x1

γ
− ρ v1 λ2 x2

γ
− ρ v1 λ3 x3

γ
+
k v1 ζx1 , x1

R

+
k v1 ζx2 , x2

R
+
k ζx3 , x3 v1

R
− ηx1 ρ−

5

3
µ v3 x3

ζx1 −
5

3
µ ζx1 v2 x2

− 1

3
µ v3 ζx1 , x3 +

5

3
µ v3 x1

ζx3 −
4

3
µλ1 x1 , x1

+ ρ v1 λ3 x3
− 1

3
µλ2 x1 , x2

− ρ v2 λ1 x2

− 1

3
µ v2 ζx1 , x2 −

1

3
µλ3 x1 , x3

− ρ v1 λ1 x1
− µ v1 yH x2 , x2

− µλ1 x3 , x3
− k ζx3 , x3 v1

γ R

− k v1 ζx1 , x1

γ R
− k v1 ζx2 , x2

γ R
− ρ v2 λ2 x1

> adj_dv2:=compute_adj_eq(LG1, v2, dv2, 2, 0, true);

−µ ζx1 , x1 v2 −
1

3
µ v3 ζx2 , x3 + ρ v2 λ3 x3

+ ρ v2 λ1 x1
+

5

3
µ v3 x2

ζx3 +
5

3
µ v1 x2

ζx1

− µλ2 x1 , x1
− ρ v2 λ1 x1

γ
− ρ v2 λ3 x3

γ
− ρ v2 λ2 x2

γ
− ηx2 ρ−

4

3
µλ2 x2 , x2

− k ζx1 , x1 v2

γ R
− k v2 ζx3 , x3

γ R
− k v2 ζx2 , x2

γ R
− 1

3
µλ3 x2 , x3

− 4

3
µ v2 ζx2 , x2

− ρ v3 λ2 x3
− 5

3
µ ζx2 v1 x1

− ρ v2 λ2 x2
− µ v2 ζx3 , x3 − ρH ζx2 −

1

3
µ v1 ζx1 , x2

− ρ v3 λ3 x2
− ρ v1 λ2 x1

− 1

3
µλ1 x1 , x2

− ρ v1 λ1 x2
+
k v2 ζx3 , x3

R
+
k v2 ζx2 , x2

R

+
k ζx1 , x1 v2

R
− µλ2 x3 , x3

− 5

3
µ v3 x3

ζx2

> adj_dv3:=compute_adj_eq(LG1, v3, dv3, 2, 0, true);
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−1

3
µ ζx1 , x3 v1 −

1

3
µλ2 x2 , x3

− ρ v2 λ2 x3
− ρ v3 λ3 x3

− ρ v1 λ1 x3 − ρH ζx3 −
1

3
µλ1 x1 , x3

− µλ3 x1 , x1
− µλ3 x2 , x2

− ηx3 ρ−
ρ v3 λ2 x2

γ
− ρ v3 λ1 x1

γ
− ρ v3 λ3 x3

γ

− 4

3
µλ3 x3 , x3

− k ζx2 , x2 v3

γ R
− k ζx1 , x1 v3

γ R
+
k v3 ζx3 , x3

R
+
k ζx1 , x1 v3

R

+
k ζx2 , x2 v3

R
− k v3 ζx3 , x3

γ R
− ρ v2 λ3 x2

+
5

3
µ v1 x3

ζx1 −
5

3
µ ζx3 v1 x1

− ρ v1 λ3 x1
+ ρ v3 λ1 x1

− 5

3
µ ζx3 v2 x2

+
5

3
µ ζx2 v2 x3

+ ρ v3 λ2 x2
− µ ζx2 , x2 v3

− 4

3
µ v3 ζx3 , x3 − µ ζx1 , x1 v3 −

1

3
µ v2 ζx2 , x3

Finally the variation with respect to H gives:

> adj_dH:=compute_adj_eq(LG1, H, dH, 2, 0, true);

−ρ λ3 x3
+
k ζx1 , x1

γ R
− ρ v2 ζx2 − ρ λ2 x2

− ρ v1 ζx1 − ρ v3 ζx3 +
k ζx3 , x3

γ R
+
k ζx2 , x2

γ R

+
ρ λ1 x1

γ
− k ζx1 , x1

R
− k ζx3 , x3

R
+
ρ λ2 x2

γ
− k ζx2 , x2

R
− ρ λ1 x1

+
ρ λ3 x3

γ
These equations can then be combined in order to obtain the variation related to the conservative variables

ρ, ρvi, ρE.
The same process is followed to obtain the boundary conditions. However, in this case there is a further

complication, because the equations have terms containing the variations (δρ, δvi, δH). See sub-section 4.3,
and eq. 38 for a proper treatment of such terms.

B Formulas for functional variations

B.1 Variation of surface integrals

In the followingsection the variation of a surface integral (see eq. 42) with respect to surface changes is explicitly
derived, in a form useful for computer algebra. Let

S = x(u, v) i + y(u, v) j + z(u, v) k (46)

be a parametric representation of the integration surface. The surface integral
∫∫

S

f(x, y, z) dσ

can be expressed as a double integral as follows:

∫ b

a

∫ δ(v)

γ(v)
f(x(u, v), y(u, v), z(u, v))W (u, v)du dv,

where

W (u, v) =
√
J2

1 + J2
2 + J2

3

with

J1 =

∣∣∣∣
∂(y, z)

∂(u, v)

∣∣∣∣ J2 =

∣∣∣∣
∂(z, x)

∂(u, v)

∣∣∣∣ J3 =

∣∣∣∣
∂(x, y)

∂(u, v)

∣∣∣∣ .

Let
S ′ = [x(u, v) + h1(u, v, a)] i + [y(u, v) + h2(u, v, a)] j + [z(u, v) + h3(u, v, a)] k
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an arbitrary variation of S controlled by a generic parameter vector a. Now we can write:

F (a) =

∫ b

a

∫ δ(v)

γ(v)

f(x+ h1, y + h2, z + h3)W (u, v, a) du dv.

The integration boundaries are unchanged and independent on a. Therefore only the variation of the integrand
has to be considered when computing the derivative with respect to a generic element α of a:

∂F (a)

∂α
=

∫ b

a

∫ δ(v)

γ(v)
∇f · ∂h(a)

∂α
W (u, v, a) du dv+

∫ b

a

∫ δ(v)

γ(v)
f
W (u, v, a)

∂α
du dv.

If f depends explicitly on a, then a further term has to be considered, and the above equation becomes:

∂F (a)

∂α
=

∫ b

a

∫ δ(v)

γ(v)
∇f · ∂h(a)

∂α
W (u, v, a) du dv+

∫ b

a

∫ δ(v)

γ(v)
f
∂W (u, v, a)

∂α
du dv +

∫ b

a

∫ δ(v)

γ(v)

∂f

∂α
W (u, v, a) du dv.

Considering that

∂W (u, v, a)

∂α
=
J1J1α + J2J2α + J3J3α√

J2
1 + J2

2 + J2
3

=
J1J1α + J2J2α + J3J3α

J2
1 + J2

2 + J2
3

W = HW

we finally have:

∂F (a)

∂α
=

∫ b

a

∫ δ(v)

γ(v)
∇f · ∂h(a)

∂α
W (u, v, a) du dv+

∫ b

a

∫ δ(v)

γ(v)
fH(u, v, a)W (u, v,a)du dv +

∫ b

a

∫ δ(v)

γ(v)

∂f

∂α
W (u, v, a) du dv.

It can be shown (see next sub-section) thatH does not depend on the particular parametric representation chosen,
and it is therefore possible to write, finally:

∂F (a)

∂α
=

∫∫

S

∇f · ∂h

∂α
dσ +

∫∫

S

fH dσ +

∫∫

S

fα dσ.

In terms of variation of h the above formula can be expressed as:

δF =

∫∫

S

∇f · δh dσ +

∫∫

S

fδHh dσ +

∫∫

S

δfh dσ

with

Hj =
JiδJihj

J2
1 + J2

2 + J2
3

.

Finally, in terms of variation of a generic function g, we have:

δF =

∫∫

S

∇f · ∂h

∂g
δg dσ +

∫∫

S

fH · δHg dσ +

∫∫

S

∂f

∂g
δg dσ (47)
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B.2 Invariance ofH with the parametric surface representation

To demonstrate the invariance ofHj it is sufficient to show that

Ji(s, t)

Ji(u, v)
= usvt − utvs

and
∂Ji(s, t,h)

∂hj
∂Ji(u, v,h)

∂hj

= usvt − utvs

This can be achieved with simple algebraic passages:

∂(y, z)

∂(u, v)
=

[
∂
∂u y(u, v) ∂

∂v y(u, v)

∂
∂u z(u, v) ∂

∂v z(u, v)

]

∂(u, v)

∂(s, t)
=

[
∂
∂s u(s, t) ∂

∂t u(s, t)

∂
∂s v(s, t) ∂

∂t v(s, t)

]

∂(y, z)

∂(s, t)
=
∂(y, z)

∂(u, v)
· ∂(u, v)

∂(s, t)
=

[
∂
∂u y ∂

∂s u + ∂
∂v y ∂

∂s v ∂
∂u y ∂

∂t u + ∂
∂v y ∂

∂t v

∂
∂u z ∂

∂s u + ∂
∂v z ∂

∂s v ∂
∂u z ∂

∂t u + ∂
∂v z ∂

∂t v

]

Ji(s, t)

Ji(u, v)
= − ∂

∂s
v
∂

∂t
u +

∂

∂s
u
∂

∂t
v

∂J1(u, v)

∂hj
=

∂2

∂u ∂hj
y
∂

∂v
z +

∂

∂u
y

∂2

∂v ∂hj
z− ∂2

∂v ∂hj
y
∂

∂u
z− ∂

∂v
y

∂2

∂u ∂hj
z

∂
(
∂y
∂hj

, z
)

∂(u, v)
=

[
∂2

∂u ∂hj
y ∂2

∂v ∂hj
y

∂
∂u z ∂

∂v z

]

∂
(
y, ∂z∂hj

)

∂(u, v)
=




∂
∂u y ∂

∂v y

∂2

∂u ∂hj
z ∂2

∂v ∂hj
z




∂Ji(s, t,h)

∂hj
=

∣∣∣∣
∂(yhj ,z)

∂(u,v) ·
∂(u,v)
∂(s,t)

∣∣∣∣+

∣∣∣∣
∂(y,zhj )

∂(u,v) ·
∂(u,v)
∂(s,t)

∣∣∣∣ =

∂2

∂u ∂hj
y ∂
∂s u ∂

∂v z ∂
∂t v + ∂2

∂v ∂hj
y ∂
∂s v ∂

∂u z ∂
∂t u− ∂2

∂u ∂hj
y ∂
∂t u ∂

∂v z ∂
∂s v − ∂2

∂v ∂hj
y ∂
∂t v ∂

∂u z ∂
∂s u+

∂
∂u y ∂

∂s u ∂2

∂v ∂hj
z ∂
∂t v + ∂

∂v y ∂
∂s v ∂2

∂u ∂hj
z ∂
∂t u− ∂

∂u y ∂
∂t u ∂2

∂v ∂hj
z ∂
∂s v − ∂

∂v y ∂
∂t v ∂2

∂u ∂hj
z ∂
∂s u

∂Ji(s, t,h)

∂hj
∂Ji(u, v,h)

∂hj

= − ∂

∂s
v
∂

∂t
u +

∂

∂s
u
∂

∂t
v
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B.3 Volume integral variation

The volume integral variation is obtained making explicit reference to the reduction formulas of a volume in-
tegral into a triple integral, and applying in a straightforward way the formula for the derivative of a definite
integral: ∫ v(t)

u(t)
f(x, t)dx =

∫ v(t)

u(t)

∂

∂t
f(x, t)dx+ f(v(t), t)

d

dt
v(t)− f(u(t), t)

d

dt
u(t)

which, applied to a triple integral, gives:

∂

∂t

∫ b(t)

a(t)

∫ δ(x,t)

γ(x,t)

∫ ψ(x,y,t)

φ(x,y,t)
f(x, y, z, t)dz dy dx =

∫ b(t)

a(t)

∫ δ(x,t)

γ(x,t)

∫ ψ(x,y,t)

φ(x,y,t)

∂

∂t
f(x, y, z, t)dz dy dx

+

∫ b(t)

a(t)

∫ δ(x,t)

γ(x,t)

(
∂

∂t
ψ(x, y, t)

)
f(x, y, ψ(x, y, t), t)dydx

−
∫ b(t)

a(t)

∫ δ(x,t)

γ(x,t)

(
∂

∂t
φ(x, y, t)

)
f(x, y, φ(x, y, t), t)dydx

+

∫ b(t)

a(t)

(
∂

∂t
δ(x, t)

)∫ ψ(x,δ(x,t),t)

φ(x,δ(x,t),t)
f(x, δ(x, t), z, t)dzdx

−
∫ b(t)

a(t)

(
∂

∂t
γ(x, t)

)∫ ψ(x,γ(x,t),t)

φ(x,γ(x,t),t)
f(x, γ(x, t), z, t)dzdx

+

(
d

dt
b(t)

)∫ δ(b(t),t)

γ(b(t),t)

∫ ψ(b(t),y,t)

φ(b(t),y,t)
f(b(t), y, z, t)dz dy

−
(
d

dt
a(t)

)∫ δ(a(t),t)

γ(a(t),t)

∫ ψ(a(t),y,t)

φ(a(t),y,t)
f(a(t), y, z, t)dz dy

Introducing the deformation field h(x, y, z), the boundary function ψ and φ can be written as:

ψ(x, y, t) = ψ0(x, y) + h3(x, y, ψ0(x, y), t)

φ(x, y, t) = φ0(x, y) + h3(x, y, φ0(x, y), t)

This allows the identity below:
∫ b(t)

a(t)

∫ δ(x,t)

γ(x,t)

(
∂

∂t
ψ(x, y, t)

)
f(x, y, ψ(x, y, t), t)dydx+

−
∫ b(t)

a(t)

∫ δ(x,t)

γ(x,t)

(
∂

∂t
φ(x, y, t)

)
f(x, y, φ(x, y, t), t)dydx =

∫ b(t)

a(t)

∫ δ(x,t)

γ(x,t)

D4(h3)(x, y, ψ0(x, y), t)f(x, y,ψ(x, y, t), t)dydx+

−
∫ b(t)

a(t)

∫ δ(x,t)

γ(x,t)
D4(h3)(x, y, φ0(x, y), t)f(x, y, φ(x, y, t), t)dydx =

∫∫

+FT

∂h3

∂t
fdy dx

Reasoning in a similar way for the remaining couples of integrals, we can finally write:

∂

∂t

∫∫∫

T

f dV =

∫∫∫

T

∂f

∂t
dV +

∫∫

+FT

∂h1

∂t
fdy dz +

∫∫

+FT

∂h2

∂t
fdz dx+

∫∫

+FT

∂h3

∂t
fdx dy
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That, in terms of surface integrals, becomes:

∂

∂t

∫∫∫

T

f dV =

∫∫∫

T

∂f

∂t
dV +

∫∫

FT

f
∂h

∂t
· n dσ

Finally, in terms of variation of a generic function g, we have:

δF =

∫∫∫

T

∂f

∂g
δg dV +

∫∫

FT

f
∂h

∂g
· nδg dσ (48)

B.4 Application of divergence theorem to terms involving crossed derivatives

The divergence theorem ∫∫∫

Ω

∇ · b dΩ =

∫∫

Σ

b · n dΣ

can be applied in two different ways to transform the following volume integral
∫∫∫

Ω

vxy dΩ

with v a generic scalar function continuous in Ω with its first- and second-order partial derivatives, such that
vxy = vyx. It is, indeed, possible to write vxy either as∇ · (0, vx, 0) or as∇ · (vy , 0, 0). This leads immediately
to the following identity: ∫∫∫

Ω

vxy dΩ =

∫∫

Σ

vxn2 dΣ =

∫∫

Σ

vyn1 dΣ

with n = (n1, n2, n3).
This identity can be used to transform some adjoint boundary conditions. This operation, indeed, can be

useful to restore symmetry in the adjoint boundary conditions automatically derived.
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Summary

Fault identification, isolation, and accomodation have become critical issues in the overall performance of
advanced aircraft systems.  Neural Networks have shown to be a very attractive alternative to classic
adaptation methods for identification and control of non-linear dynamic systems.  The purpose of this paper is
to show the improvements in neural network applications achievable through the use of learning algorithms
more efficient than the classic Back-Propagation, and through the implementation of the neural schemes in
parallel hardware.  The results of the analysis of a scheme for Sensor Failure, Detection, Identification and
Accommodation (SFDIA) using experimental flight data of a research aircraft model are presented.
Conventional approaches to the problem are based on observers and Kalman Filters while more recent
methods are based on neural approximators.  The work described in this paper is based on the use of neural
networks (NNs) as on-line learning non-linear approximators. The performances of two different neural
architectures were compared.  The first architecture is based on a Multi Layer Perceptron (MLP) NN trained
with the Extended Back Propagation algorithm (EBPA).  The second architecture is based on a Radial Basis
Function (RBF) NN trained with the Extended-MRAN (EMRAN) algorithms.  In addition, alternative
methods for communications links fault detection and accomodation are presented, relative to multiple
unmanned aircraft applications.

Introduction

The previous decade has witnessed a dramatic increase in neural networks (NN) research, mostly induced
by the introduction of the Back-Propagation algorithm for feedforward NNs with supervised learning.  During
the initial stage of this growth NNs have been applied to pattern recognition and classification, which can be
classified as static problems.  Within a later trend NNs were proposed for identification and control of
dynamic systems of both linear and nonlinear nature.  The reason behind this application lies in the fact that,
despite progresses were made in adaptive control theory for linear systems, a solution for the identification
and control of a non-linear uncertain system was yet to be formulated.  A complete review on NN theoretical
principles is widely available in the literature.

In general, a neural network is defined as an architecture featuring input and output  parameters
interconnected through one or more layers of neurons, also called processing elements, which provide a non-
linear activation.  The operations at each neuron consist of adding the total weighted sum of all the input
signals of the preceding layer, with the option of adding a threshold value; this total sum becomes then the
argument of a non-linear function, which provides the activation, to generate an output signal.  During
learning, the weights and the thresholds of the architecture are updated, typically with a gradient based
method, with the goal of minimizing a cost function associated with an identification, control or other task.

Fault tolerant flight control systems (FTFCS) are required to accommodate failures in different components,
mainly sensors and actuators.  Some of the procedures described in this paper focus on the sensor failure
problem.  Sensor failures are critical when the measurements from the failed sensor are used in the feedback
loop of the flight control laws.  In fact, sensor failures, if left undetected and uncompensated, can lead to

Paper presented at the RTO AVT Course on “Intelligent Systems for Aeronautics”,
held in Rhode-Saint-Genèse, Belgium, 13-17 May 2002, and published in RTO-EN-022.
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closed-loop instability and, potentially, unrecoverable flight conditions.  Most of today’s high performance
military aircraft as well as commercial jetliners feature a flight control system with triple physical redundancy
in the sensory capabilities.  A Fault Detection (FD) scheme monitors these components and, as a sensor failure
is detected, it recovers the nominal functionality by switching from the faulty unit to one of the two remaining
back-up units.  A voting-scheme between the different signals from the sensors measuring the same parameter
is typically used for this task.  However, there are special purpose aircraft (e.g. UAVs) and spacecraft where
reduced complexity, lower costs, and weight optimization are major design specifications.

For these classes of aircraft and spacecraft, an alternative approach can take advantage of the analytical
redundancy existing in the system to provide fault tolerance capabilities.  Analytical redundancy is the known
functional relationship existing between the system’s outputs, states and inputs.  In other words, the
information provided by a set of sensors along with a priori knowledge of the system allows detecting and
identifying the faulty sensor, while estimating the related variable as a function of other measured variables.
Research on fault tolerance based on analytical redundancy has produced a quite mature framework especially
for linear systems.  Currently, substantial research challenges are in the extension of the previous schemes to
the case of nonlinear systems.  Adaptive and on-line approximation methodologies are receiving considerable
attention and the use of different types of Neural Networks has been proposed to take advantage of some of
their properties.  The performance of a NN in approximating a given function critically depends on its
underlying structure as well as on the featured training algorithm.  The two classes of NNs here considered for
sensor failure evaluation are the Multi-Layer Perceptron NNs (MLP NNs) and the Radial Basis Function NNs
(RBF NNs). Due to their approximation and adaptation capabilities, both MLP and RBF NNs have been
proposed as estimators to approximate complex non-linear systems.  Within a larger picture both classes of
NNs can be considered as “nonlinear approximators” and a systematic procedure based on Lyapunov’s theory
for creating non-linear approximators with stability characteristics could be applied to each class.

Other aspects of interest in fault detection are those related to succesfull missions of unmanned air vehicles,
possibly flying in formation.  Here, one of the main concerns is the reliability of the overall communications
system, since each vehicle relies heavily on it, in order to maintain the desired position within a formation,
and follow some prescribed flight path.  In this case, there are many forms of analytical redundancy that can
take place, based on neural network techniques, or other methodologies using traditional optimizers.  One
interesting aspect is the capability of using NNs to estimate the wake effects in the absence of position sensor
information, or as a redundancy for a sensor information failure.  Another application is the formation
management flow change due to generic failures in the transmitters and/or receivers.  In this case, in addition
to fault accomodation, the problem is also that of reconfiguring the overall formation structure, in order to
continue the mission and/or the assigned task(s).  After a generic fault, a fast reconfiguration procedure is run
to restore formation-keeping as quickly as possible.  When the formation communications are in a safe
configuration again, it may be necessary to switch aircraft positions or move an aircraft to an empty node to
maximize the formation keeping and safety of all aircraft inside the formation.  Since the node-changing
decision is decentralized, the algorithm that makes the decision must be deterministic to avoid simultaneous
conflicting decisions by more than one aircraft in response to the same post-fault-reconfiguration
requirements.  The second problem to solve is distribution of fault event information so that all aircraft can
apply appropriate reconfiguration decisions.  Even if the available communication channels, those used to
exchange flight data for formation control, are sufficient for optimal channel reconfiguration, it is possible that
the best aircraft candidate for making the node change decision may not be informed of the fault event.

Basic Concepts in Identification and Control

A generic multi-input/multi-output (MIMO) discrete-time system with n states, m inputs and l measurable
outputs can be represented by:

x(k + 1) =   x(k),u(k)Φ
y k x k( ) ( )= Ψ

where: x(k) = [x1(k), x2(k), ... , xn(k)]T, u(k) = [u1(k), u2(k), ... , um(k)]T, y(k) = [y1(k), y2(k), ... , yl(k)]T.
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If the system is linear and time-invariant then the equations take on the well-known form:

x k Ax k Bu k( ) ( ) ( )+ = +1
y k C x k( ) ( )=

where Anxn, Bnxm, and Cnxl are the traditional state, control and output matrices.  The relative system can be then
defined through the set of matrices (A,B,C).  If the system is linear and known, controllability of the system
can be asserted and different feedback control strategies, either of classic compensation type or from modern
control theory, can be introduced to meet different specifications.  For the identification task at linear
conditions, that is if the system is linear and (A,B,C) are partially or completely unknown, the problem of
identifying (A,B,C) can be clearly formulated and solved.

However, if the system is non-linear and Φ, Ψ are unknown, the identification problem is quite more
complicated.  Furthermore, for the control task at non-linear conditions, there is a lack of control schemes
regardless whether Φ, Ψ are known or unknown.  Adaptive control of uncertain systems is feasible in the
linear case.  In particular, within this direction, SISO adaptive systems tracking a desired dynamics have been
extensively analyzed with the Model Reference Adaptive Control (MRAC) method being one of the most
representative approaches.

Let us for example consider the problem of identification and control of SISO nonlinear unknown systems.
There are four discrete-time models, which can be used to describe this type of systems:

Model I y k f y k y k n b u k ii
i

m
: ( ) ( ),.., ( ) ( )+ = − + −∑

=
1

0

Model II y k f y k y k n b u k ii
i

m
: ( ) ( ),..., ( ) ( )+ = − + −∑

=
1

0

[ ] [ ]: ( 1) ( ),..., ( ) ( ),..., ( )Model III y k f y k y k n g u k u k m+ = − + −
Model IV y k f y k y k n u k u k m: ( ) ( ),..., ( ), ( ),..., ( )+ = − −1

There has been a large variety of studies related to observability, controllability for these systems as well as
for designing controllers and observers for them.  In this example we will refer to multi-layer feed-forward
NNs with supervised learning performed with gradient based algorithms.  The suitability of a NN approach to
the general identification and control task becomes somewhat immediate if one considers the following
properties.
Applicability to non-linear systems.  The applicability of NNs to non-linear systems originates from their
mapping capabilities.  It has been shown that a feedforward NN with at least one hidden layer is capable of
approximating any nonlinear function once enough training is provided.  This property can be extremely
useful when the input/output data are related to a non-linear time-varying system.
Parallel processing and hardware implementation.  NNs have an inherent parallel architecture, which, leads
naturally to parallel hardware implementations.  These implementation have also the advantages of having, in
general, high degree of fault-tolerance and high processing speed, due to the simplicity of the computations
(additions, subtractions, multiplications).  These advantages have been magnified by the introduction of
digital microprocessors with ever increasing performance.
Multivariable systems.  NNs, by definition, are multi-input, multi-output (MIMO) entities and this, naturally,
leads to their application to multivariable systems.
Learning and adaptation.  NNs can be trained using past recorded data or simulated data (off-line training) or
current data (on-line learning).  Furthermore, among the learning capabilities of a NN, one must differentiate
between local and global learning capabilities.  Local learning leads to adaptation capabilities to new dynamic
conditions while global learning leads to memorization capabilities from previously presented data.

Consider a generic SISO non-linear unknown system described by any of the four models in the previous
section.  The objective is to provide a NN-based identification scheme for the functions 'f' and/or 'g'.  A
necessary assumption for a well-posed approach is that the system have a bounded response for any bounded
set of input data (that is, it is a BIBO stable system).  This, in turn, implies that the neural identifier will also
need to be BIBO stable.  Extensive research efforts are undergoing at this time for the analysis and the proof
of stability properties of multi-layer neural networks.  Another assumption is that the neural identifier will
have to be of series-parallel type meaning that the actual system output y(k), rather than its estimate, is used as
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input by the identification scheme during and after the training.  The alternative is to use a parallel-type
identifier, meaning that the estimate of y(k) from the neural identifier is obtained using as input estimates of
y(k) at previous time steps.  It should be underlined that the stability for this type of identifiers has yet to be
proved even for simple linear systems.  The selection of a series-parallel mode instead of a parallel model is
mainly due to the fact that, since the system is assumed to be BIBO and stable, all the input to the NNs are
bounded.  However, once the neural identifier has been sufficiently trained and the estimation error has
converged to a sufficiently low asymptotic value, the series-parallel mode may be replaced by the parallel-
working mode.  With these working assumptions in place, the next issue to be addressed is related to the
selection of the training algorithm for the neural identifiers.  To date, the majority of the training for neural
networks is being performed with the Back-Propagation (BP) algorithm, a gradient-based optimization
method.  Slow learning, especially for large order systems, and local minima are "classical" well documented
problems of the BP.  Unfortunately, these two problems are known to be mutually related and interactive.  For
example, it has been shown that the learning speed can be improved by setting a proper learning rate.
However, this also increases the possibility for the BP to be trapped in a local minimum or to oscillate around
the global minimum.

To solve address problems, several alternatives to the BP have been proposed by many researchers.  Most of
the work has been concentrated on introducing different activation functions or particular procedures for
selecting the initial weights.  Within this stream of investigations, the authors have used an approach based on
the introduction of an heterogeneous network.  In an heterogeneous network each neuron in the hidden and
output layers has its own capability of updating some new parameters giving the overall architecture increased
mapping and adaptation performance.  Specifically, in a heterogeneous network each neuron is able to change
its output range (upper and lower bounds: U, L) and the slope of the sigmoid activation function (temperature:
T).  The new non-linear activation function will be given by:

f x U L T
U L

e
Lij ij ij ij

ij ij
x T ij

ij ij
( , , , ) /=

−

+
+−

1

where i,j are the indices for the generic neurons of the hidden and output layers and 'x' is the argument of the
classic sigmoid function of the BPA.  This function is implemented at each processing element of the hidden
layer(s) and output layer.  The gradient is calculated to perform the steepest descent as in the BP.  The only
difference is that the gradient descent will be found with respect to each of the independent variables
'x','U','L','T', as opposed to 'x' only.  The training algorithm associated with this heterogeneous network is
named Extended Back-Propagation (EBP) and is described with details in the listed references.

The design of on-line learning neural controllers, and neural identifiers can be complicated by the large
number of degrees of freedom (number of hidden layers, number of neurons per hidden layer, size of input
data window, magnitude of the learning rate and momentum coefficients) in the selection of the neural
architectures.  Previous work provided the following guidelines for the selection of suitable neural
architectures :
- on-line learning neural controllers and neural identifiers are generally very robust to different number of
neurons per hidden layer and a different input data window;
- medium-high learning rates, either constant or slowly decreasing with time, performed better for on-line
learning neural controllers while low learning rates perform better for on-line learning neural identifiers;
- simple single hidden layer architectures perform as well or better than more complicated and more
computationally intensive multiple hidden layers architectures;
- a proper selection of the data to be presented as input and an appropriate choice of the performance indices
to be minimized are, by far, the most effective degrees of freedom in the selection of neural architectures.

Next, neural identifiers will be introduced using both BP and EBP algorithms.  Consider a different SISO
unknown non-linear system described by :

y k
y k

y k
u k( )

( )

( )
( )+ =

+
+1

1 2
3
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representing a Model III system.  In this case a neural network based identification scheme will consist of two
neural identifiers, that is an identifier Nf for the function:

f y k
y k

y k
( )

( )

( )
=

+1 2

and an identifier Ng for the function:

g u k u k( ) ( )= 3

such that the estimation dynamics can be expressed as:

�( ) ( ) ( )y k N y k N u kf g+ = +1

As two hidden layer architecture was selected: both neural identifiers are of the type N1,20,10,1.  The study
involved two different phases, that is an initial training phase followed by a testing phase.  During the training
phase two sets of two similar N1,20,10,1 architectures (one using the BP and the other using the EBP) were
trained for 100,000 steps with u(k) being a random number uniformly distributed between [-2,2] and using a
0.25 learning rate.  The range for u(k) implies that the estimate of g will span between [-8,8] while the
estimate of f will span between [-10,10].  During this phase the identifier is working in a series-parallel mode,
that is the actual system outputs at previous time steps are used by the identifier to provide an estimate at the
present time step.

Statistics of the Training Phase  for Nf
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Figure 1.  Statistics of Training Phase for Function ‘f’

The training performances associated with the two algorithms were evaluated every 2,000 steps during the
100,000 steps simulation for a total of 50 test points.  At each test point the performance of the neural
identifier were analyzed using a 100 steps simulation.  Classical statistical parameters, that is mean, mean
square and variance, were introduced to monitor the estimation errors for 'f' and 'g' and given by

M
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∑ = ∑
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∑
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In terms of complexity and required computational effort for the neural architectures, the number of
parameters to be updated at each time is 354 using the EBP and 261 using the BP.  Therefore, there is a 35%
increase in complexity using the EBP due to the additional parameters U,L, and T.  The statistical results are
shown in Figure 1 for the identification of the function 'f', similar results are available for function ‘g’.  The
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trends for MEE, MSEE and VEE show that the EBP clearly outperforms the BP.  In particular, it can be seen that
the estimates using BP exhibit a bias most likely caused by the BP algorithm getting stuck in a local minimum
point.  Efforts were made in repeating the training phase with the BP several times; however, local minimum
points problems seemed always to be present to a certain extent.  The bias problem for the BP is even more
clear in Figure 2, showing estimates of 'f' following the training phase.  After the 100,000 steps training phase
the two combined neural identifiers, working in a parallel mode, providing an estimate for y(k+1) are tested
for 1000 steps with the control sequence u(k)=sin(2πk/25)+sin(2πk/10).  The results are reported in Figure 3
and Table I indicating  better performance of the EBP algorithm.  The reason for the improved performance of
the EBP vs. the BP algorithm has to be searched in the different learning characteristics.
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Figure 2.  Testing Phase, Estimate of Function ‘f’

Table I.  Statistics of Estimation Error: Testing Phase

BP Algorithm EBP Algorithm
Time 100,001-100,100 100,001-100,100
Mee -.0277 -.0154
Msee .0017 .000518
Vee .000945 .000750
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Figure 3.  Testing Phase: Simulation

The reason for the improved performance of the EBP vs. the BP algorithm has to be searched in the different
learning characteristics.  The EBP has more degrees of freedom in the learning through the use in the gradient
method of the following partial derivatives :
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as opposed to the derivative
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in the BP algorithm.  In the above equations, Oi,j represents the generic output of a neuron at the hidden
layer(s), and at the output layer respectively.

The previous example illustrated successful applications of neural identifiers.  Next, the problem of adaptive
control via NNs is considered.  The problem of controlling a generic dynamic system can be divided into a
regulation or a tracking.  In a regulation problem the goal is to achieve, through an appropriate feedback
control law, an equilibrium condition around a certain set point.  In the tracking problem the objective is
instead to achieve, through the feedback control law, an accurate following of a reference model response.
The control part of this example is related to the tracking problem for an unknown non-linear SISO system.  It
is known that most of adaptive control theory is based on the Model Reference Adaptive Control (MRAC)
relative to linear time-invariant systems.  Particularly, Reference 14 shows two different approaches, that is
the direct and the indirect approaches.  It should be emphasized that the closed-loop dynamics with the
adaptive control scheme, both in the direct and indirect form, will be nonlinear even if the open-loop system is
linear and time-invariant.  In a direct adaptive control scheme the parameters of the control scheme are
adjusted on-line to satisfy some control specifications.  In indirect adaptive control scheme instead the
parameter identification scheme is first implemented providing estimates of the actual system parameters with
the parameters of the controller calculated assuming these estimates of the system parameters.

There is a well known problem in using a neural network approach for a direct adaptive control of a non-linear
system.  In fact, the neural network controller output error, which is used to update the weights and the
thresholds of the neural controller, is not directly available.  The only available information is the tracking
error between the desired and the actual response, which is only a function of the error at the neural controller
output.  Several methods have been proposed in the literature to overcome this problem and tested on non-
linear SISO systems.  Reference 21 suggests a method where the system dynamics are treated as not
modifiable layer of the neural controller and the tracking error is back-propagated through the dynamics.  In
[5] another approach is suggested, where the tracking error is transformed into the neural controller error
using the dynamics inverse transfer matrix.  Reference [12] presents a third method where a feedback gain is
introduced to generate a transformed error signal used to update the architecture of the neural controller.
Finally in [26] a scheme is introduced, where the architecture of the neural controller is updated using the
tracking error with the addition of an extra single layer gain between the neural controller and the system.

This section, however, describes results related to indirect adaptive control with a neural approach.  In the
absence of well formulated stability and robustness criteria a natural approach for nonlinear systems can be
given by trying to extend some results relative to linear adaptive control theory.  For example, in linear
adaptive control theory it was concluded that adaptive control laws for a stable closed-loop system can be
found if some "a priori" knowledge of the system was available.  Similarly, the probability of success of the
adaptive control of a nonlinear SISO system can be assumed to be a strong function of the amount of "a
priori" information on the unknown system.

A safer and more conservative set-up of the problem is to apply adaptive control, in order to achieve tracking
of a desired system response using an indirect approach.  That is only after the non-linear system has been
identified within a desirable level of accuracy.  It should be underlined, however, that even this conservative
approach does not guarantee closed-loop stability and acceptable tracking performance, even in the case of a
BIBO stable system, since the adaptive control law can lead to an unstable system during the transient.  It can
be speculated that fast on-line learning capabilities of the neural controllers, which are direct function of the
selected learning algorithm, are critical for this purpose.  On the other side, closed-loop stability, and possibly
good tracking performance are only a remote possibility if adaptive control using neural identifiers and neural
controllers is attempted with a direct approach, that is without any "a priori" identification phase.  In the
following, the tracking capabilities and the robustness of a NN-based indirect adaptive control scheme are
evaluated.
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Consider the same unknown SISO nonlinear system described before, and representing a Model III system.
This time the objective is to find an adaptive control law u(k) such that the actual system response y(k) tracks
a desired model response ym(k), with the dynamics for the reference model given by:

y k y k r km m+ = +1 0 6a f . ( ) ( )

recall that previously we had:

�( ) ( ) ( ) � ( ) � ( )y k N y k N u k f y k g u kf g+ = + = +1

Following the training phase we had that the estimates of y(k) were converging to the actual y(k) response.
For the actual system to track the desired model response we would have

� ( ) � ( ) . ( ) ( )f y k g u k y k r km+ = +0 6

isolating � ( )g u k  yields:

u k g y k r k f y k g z km( ) � . ( ) ( ) � ( ) � ( )= + − =− −1 10 6o t

The tracking problem is solved by introducing a neural adaptive controller Nc for the online determination of
u(k).  In particularly, two neural controllers, trained using EBP and BP respectively, are introduced.  Both of
them will have architecture N1,20,10,1 with input z(k) with a learning rate of 0.01.  The closed-loop system will
therefore include two neural identifiers (Nf,Ng); and one neural controller (Nc).

Statistics of the Training Phase for Nc
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Figure 4.  Statistics of the Training Phase for “g-inverse”

Again, there is an initial training phase and a testing phase.  During the training phase two similar sets (one
using BP and the other using EBP) of 3 neural architectures (Nf,Ng,Nc) were trained for 100,000 steps using
the same random input u(k) between [-2,2] used previously.  The training performance were evaluated every
2,000 steps for a total of 50 test points.  The statistical results for the identification of 'f' and 'g' were very
similar to the ones obtained previously, while the results for the identification of the inverse function of 'g' are
shown in Figure 4.  The tracking capabilities of the closed-loop system are then evaluated with a 5000 steps
simulation.  The results are summarized in Figure 5; in particular Figure 5 shows 2 different 100 steps
simulation starting respectively at instants 1, and 4,901.  The superior performance of the EBP algorithm are
once again confirmed by the statistical data on the tracking error shown in Table II.  It can be seen that the
EBP neural estimate is practically unbiased and has a variance approximately 4.25 times smaller than the
correspondent BP variance.
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Figure 5.  Testing Phase: Simulation

Table II.  Statistics of the Tracking Error: Testing Phase

BP Algorithm
Time 1-1,000 2,501-2,600 4,901-5000
Mte -0.0237 .0004 -.0003
MSte .2743 .0139 .0148
Vte .2765 .014 .0149

EBP Algorithm
Time 1-1,000 2,501-2,600 4,901-5000
Mte .0707 .0005 .0002
MSte .0720 .0042 .0035
Vte .0677 .0042 .0035

The next step of this study is to evaluate the robustness of the neural-based tracking to a time-varying system.
For this purpose the original nonlinear SISO system is simulated to change instantaneously, starting at the
5,000-th step, to 3 different arbitrarily selected configurations before returning to the original configuration.
At each configuration a 5,000 steps simulation is performed using both the EBP and the BP algorithms.  The
different configurations are:

For k=5,000-9,999, Config. 1
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For k=15,000-19,999, Config. 3
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For k=20,000-24,999, Config. 4
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Several 100 steps simulations time histories of the reference model along with the closed-loop system
response using both EBP and BP algorithms are shown in the next figures for different points of the 5,000 step
simulation.  For the tracking problem, the statistics are expressed in terms of the tracking error, defined as:
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From the plots and the statistical results, it can be seen that the tracking performance associated with the EBP
algorithm are somewhat worse than the correspondent BP performance only during the transient phase of the
transition of the system between different configurations.  Once this transient phase is past, the closed-loop
system with EBP trained neural identifiers and controller clearly outperform the BP version.
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Simulation - Original System
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Figure 6.  Simulation Comparison Original System

Simulation - Original System  to Config. 1
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Figure 7.  Simulation Comparison to Config. 1
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Figure 8.  Simulation Comparison to Config. 2

Simulation - Config. 2 to Config. 3
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Figure 9.  Simulation Comparison to Config. 3

Simulation - Config. 3 to Original System
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Figure 10.  Simulation Comparison to Original System

Failure Detection using Neural Networks

Failure detection (FD) is a widely investigated problem in current flight control research, due to the ever-
increasing complexity, and interconnectivity of the system at end.  Generally speaking, FD implies some sort
of continuous monitoring of the measurable outputs of the system.  Under nominal conditions, these variable
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tend to follow rather well established patterns, within the uncertainty due to process disturbances, such as
atmospheric turbulence, sensor noise, and actuator biases.  A failure to any component of the flight control
system (FCS) will produce deviations from nominal and somewhat predictable trajectories.  Spotting a
deviation between nominal and failed trajectory is usually the basis of any FD technique.  The knowledge of
the system's behavior by the flight control system at any operating point needs then to be available at a very
heavy computational and storage costs, limiting the prediction to linear time invariant, low order, and white
noise-based models of predicted trajectory behavior.

Neural network architectures have been primary candidates to maintaining the same level of, or improving FD
capability without increasing computational burden.  The mapping property of a NN architecture can be
extremely attractive when the input-output data are related to completely or partially unknown dynamics.
Several factors must be taken into account however, when considering the implementation of NN estimators.
A key issue in the design of a NN based state estimator is the selection of online learning vs. offline learning.
Of course in an offline situation all training has been performed beforehand, and the network has a frozen
architecture.  Due to the variability of the dynamics and failure conditions, however, the potential of on-line
architectures was studied in the present work because of its inherent added flexibility.  In the following, we
refer to an on-line structure of feed-forward type with interlayer connections schematically shown in Figure 1
as implemented by a three-layer NN.  More details on the architecture can be found in [32].

General Sensor Failure Detection

The overall sensor failure detection, identification, and accommodation (SFDIA) problem is addressed in the
context of aircraft dynamics, by using multiple architectures consisting of a centralized structure (MNN), and
a set of ‘n’ decentralized structures (DNN), where ‘n’ is the number of non-redundant sensors.  Figure 11
shows a diagram of the layout of the main neural network.  A similar one, but with a single output, can be
obtained for the n DNNs which, after sensor failure, will provide accommodation.  Figure 11 shows the flow
of the SFDIA process in a three-sensor case, with a simulated failure for sensor #2.  A more detailed
description of the process can be found in the references (32, 35).

The main network MNN receives the input from control commands and the vector of measurements y,

providing the estimate yE of the same measurements as output.  The EBPA updates MNN based on the error,
and the learning process is monitored by a quadratic error parameter

( )∑ −=
=

outputs

i

E
MNN yyE

1

2

Each ith DNN receives the input form the control and n-1 sensors, where the missing signal is relative to the
corresponding measurement.  The training procedure is similar to that of MNN, until failure is detected.  Upon

failure of the ith sensor, detection can be accomplished by the value of EMNN exceeding a given threshold.
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Figure 11.  SFDIA Diagram, Example of failed #2 Sensor

When this occurs, identification can be achieved by monitoring the absolute value of the estimation error of

the ith DNN

j
ID
DNN EE =

Identification is again assumed if the error in the above equation is greater than a specified level.  The
procedure outlined above consists of two steps, thus reducing the chance of false alarm.  Failure
accommodation is then performed by replacing the value of the data coming from the failed sensor, with the
estimate of the corresponding DNN, which stops the learning process and “freezes” its architecture at this
point.

Figure 12.  Sensor Failure Accomodation

Figure 12 with a single output describes therefore the accommodation procedure as well, whereas the entire
SFDIA is described in Figure 11, noting that DNNs update is performed at each step, at the frequency of the
sensors.  References 34, and 35 present several applications simulating soft and hard failures in the dynamic
behavior of a full-envelope nonlinear aircraft model representative of a high performance twin engine flight
vehicle.  The system considered here has 11 sensors and 5 actuators.  As an example, we consider the case of
a soft failure (the sensor does not fail completely) representative for instance of added bias in the instrument
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readings.  The sensor considered here is the roll-rate gyro, which is one of the primary measurements in the
lateral-directional motion of the aircraft.  Figure 13 shows the time history of the error in the MNN with a
detection spike at 1700 seconds, while the measured variable, roll rate is plotted in Figure 14.  From that
figure, the time history of the roll rate DNN follows the actual roll rate in a satisfactory manner.

Figure 13.  Roll Rate Gyro Bias Failure, NN Est. Error, SFDIA on

Figure 14.  Roll Rate Gyro Failure, Time Histories

General Actuator Failure Detection

During the operation of a flight vehicle, actuator failures can occur for reasons internal to the system, as well
as for external causes such as battle damage for military aircraft.  Dealing properly with actuator failure is
usually critical in that reduced controllability and even loss of controllability may happen with heavy financial
losses as well life-threatening situations.  The same dynamic system described in the previous section is
considered here, which is modeled by a full nonlinear simulation code, and a FCS consisting of five
aerodynamic control surfaces providing control moments on the three axes (pitch, roll, and yaw).  The
simulation is related to a typical high maneuverability task with simultaneous commands on the actuators,
plus the appropriate thrust setting.  Several actuator failures have been studied involving a fault in the hinge
moment capability, and percent loss of control effectiveness.  These failures require extensive analysis of the
modified aerodynamic effects on the aircraft, in order to have a realistic simulation capability and were part of
a concerted research effort, as reported in Reference 35.
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The measurement data are all fed into the neural network, which is training on-line, and the process is
monitored by evaluating the difference between the estimated and actual angular velocity in terms of body
axes components at each instant k as

Ωerr

est est est

k

p k p k q k q k r k r k

a f

e j e j e j

=

− + − + −L
NM

O
QP

1

2

2 2 2
( ) ( ) ( ) ( ) ( ) ( )

It must be noted that in this case, unlike SFDIA, the network must be able to separate sudden variations in the
actuator time histories due to pilot maneuvering commands, from failures, therefore training plays a much
more critical role here.  A parametric analysis was carried out to determine the most appropriate failure
detection and identification scheme keeping in mind a compromise between NN architecture complexity and
on-line computational requirements.  The results led to a structure consisting of 9 inputs 2 patterns, 18 input
data, 1 hidden layer, 10 P.E. in the hidden layer, and 3 P.E. in the output layer.

Figure 15.  True and Estimated Pitch Rate after Failure

Figure 16.  Actuator Failure Detection using Angular Velocity Error

Figure 15 gives an example of pitch rate (q) time history following a damage of the left stabilator of the
aircraft at t=1400 sec (control surface stuck at 20 degrees, and 50% loss of control effectiveness).  The change
in behavior of q, which is coupled with similar changes in the other components of angular velocity, induces a
variation in ( )Ωerr k , interpreted as failure detection as shown in Figure 16.  Note that a different parameter

could have been chosen in the failure detection scheme.  Choice of ( )Ωerr k  was preferred since it contains

variables directly affected by the aircraft dynamics, and dimensionally consistent.  Following the detection of
failure, sensor data must be interpreted in order to identify the damage location.  The identification procedure
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relies on on-line evaluation of the cross-correlation function between key variables, which is then stored in
temporary memory on the FCS computer.  In the above example of a damaged stabilator, since both pitch and
roll rate are involved, the cross-correlation function used is given by

R k R kpq
coef

pq
coef

FI
Thres( ) ( )−∑ − −∑ >1 2 ε

and similarly for the other actuators.  The behavior of the cross correlation time history is shown in Figure 17
taken with a time window of 7 instances.  Although the presence of false alarms is not avoided, especially at
the detection level, the use of above equation has proven very effective in terms of false alarm rate of the
entire failure detection and identification process.

Figure 17.  Pitch Rate and Roll Rate Cross Correlation as Failure Identification Parameter

Comparison with Standard Methods

One of the techniques traditionally used is the failure detection problem is based on the application of a
Kalman filter both in its linear (KF) and nonlinear (EKF) versions.  Valuable contribution of Kalman filtering
relies heavily on the particular structure of the dynamic system, that is its linearity or linearization properties.
In the following, a simple comparison between the neural network approach presented and the application of
KF is presented.  The dynamic system considered is representative of a high altitude unmanned aircraft used
for scientific missions, sensor failure detection and identification is analyzed, based on a linearized model of
the system itself, and relative to angular velocity rate gyros.  The structure of the KF-based scheme is taken at
first as specular of that relative to the neural network SFDIA previously described  This implies a main
Kalman filter block (MKF), plus a number n of decentralized blocks (DKFs) corresponding to the number of
on board sensors (three sensors in this application).  Several types of failures were considered ranging from
instantaneous biases of different amplitude, to biases entered with ramp transients.  Different system's
configurations were also studied, from nominal model and system dynamics and noise, to discrepancies in the
dynamics and noise statistics, and detailed results can be found in references 37, and 38.  The example in
figure 19 shows the failure of the Kalman filter scheme to recognize a 2.4 deg/sec bias entering as a ramp as
supposed to the NN scheme, when system and filter models have discrepancies in the dynamics and noise
statistics.
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Figure 18.  Estimation Error Comparison between KF and NN, with Model Discrepancy

Sensor Validation using Unmanned Air Vehicle Data

This section describes some results of SFDIA research besed on experimental data relative to an unmmanned
research aircraft.

Description Of The B777 Model And Its Electronic Payload

The aircraft model shown in Figure 19 is a 1/24th semi-scale B777 research designed, built, assembled,
instrumented, and flown at WVU.  Scaled research models do not exhibit acceptable flying qualities due to the
negative effect of the payload on the dynamic characteristic.  Therefore, specific changes were made to the
geometric and aerodynamic characteristics of the “perfectly scaled” model to achieve desirable handling
qualities. In particular, the design aimed to achieve acceptable values for two specific parameters, that is the
Thrust/Weight (T/W) and the Weight/Wing Surface (W/S) ratios. The aircraft was essentially designed around
its electronic payload with a simple “2 component: tail/fuselage + wing” architecture. The wing, featuring
ailerons, inboard/outboard flaps and housing the fuel tanks, was manufactured with fiberglass, carbon fiber,
foam, and lightweight plywood.

Figure 19 - B777 Model in Flight and during Approach

The fuselage was manufactured using carbon fiber as a whole piece along with the horizontal tail and the
vertical tail. Additional servos on the fuselage include a nose wheel and a brake servo. The B777 aircraft
propulsion system features two ducted fan engines with a nine-rotor blade system with an engine shroud/rotor
hub assembly.  The units are housed in scaled engine nacelles to add realism to the model. The main
characteristics are summarized in the following Table.
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Fuselage length 8.75 ft
Wing span 8.92 ft
Wing surface 11.3 ft2

Weight (with R/C components,
     48 oz. Fuel, and payload)

46 lb.

Maximum thrust (approx.) 24.0 lb.
Weight (with R/C components,
     48 oz. fuel)

30.2 lb.

Table III – Research Model Characteristics

The onboard computer package, featuring a CPU board, a passive backplane, a 16 MB RAM Disk card, a data
acquisition card and a chassis frame, is the core of the aircraft electronic payload since it executes the data
acquisition software to acquire the data from all the sensors. The 16 MB RAM disk stores the on-board
software and the recorded flight data, which, upon landing, are retrieved through laptop computer via parallel
port. The aircraft transmitter/receiver unit features a 10-channel programmable/menu driven system with the
capabilities of customizing aircraft controls with a built-in microprocessor. This ground unit allows the pilot
to command the conventional aircraft controls with the addition of mixing control surfaces and programming
maneuver functions. In terms of the sensor capabilities, the electronic payload features a unit with 3 gyros and
3 accelerometers, an air-data probe with pressure sensors for altitude and airspeed measurements, an
aerodynamic vane with potentiometers for the aerodynamic angles, and potentiometers at the hinges of each
control surface for the measurement of the surface deflections. Additional components of the payload include
batteries and power converters. A total of 33 flights have been performed with 16 flight tests specifically for
SFDIA purposes.

Learning-Based SFDIA

Analytical redundancy based methods have been widely discussed in the past.  Specific applications have also
been developed in the field of flight control systems.  In these methods an analytical model of the system is
used inside within “observers” to provide estimates of measured variables.  This redundancy is then used both
to detect a fault and to provide fault tolerance capability to the system.

The most relevant signals that characterize the longitudinal dynamics of an aircraft are:
Angle of attack α [rad];
Pitch rate q [rad/sec];
Normal acceleration az [g];
Elevator deflection δe [rad].
Velocity relative to the air V [m/s]
Altitude H [m]
The analytical redundancy between these signals is ensured by the equations of motion of the aircraft and in
particular by the “normal force equation” below expressed along the body fixed reference frame:

2 2( ) ( , , , / , / ) / 2z z e zma H V SC V a V q Vρ α δ=

where m is the aircraft mass, az is the normal acceleration measured at the center of gravity, S is the reference
surface, ρ is the air density, and Cz is the normal force non-dimensional coefficient (which is a function of α,
q/V and δe). In this effort it was assumed - without any loss of generality - that a failure can occur only on the
sensors measuring α, q, and az .  The analytical redundancy between the variables involved in the above has



11-18

been exploited to build up the input-out models required in the SFDIA scheme. In particular, the following
estimation models where employed:

( )2ˆ( 1) ( ), ( ), ( ) / ( ), ( ) / ( ), ( )z ek f V k H k a k V k q k V k kαα δ+ =

( )2ˆ( 1) ( ), ( ), ( ) / ( ), ( ), ( )q z eq k f H k V k a k V k k kα δ+ =

( )ˆ ( 1) ( ), ( ), ( ) / ( ), ( ), ( )
zz a ea k f H k V k q k V k k kα δ+ =

The signals az/V
2 and q/V have been used in the above relationships instead of az and q because they allow for

the non-linearities of the functions to be smoother and, therefore, easier to be identified.  In general, since the
non-linearities in aircraft dynamics are relevant, the use of non-linear approximators is required.

The purpose of residual generation is to check if the actual measurements fit the process model.  This can be
accomplished by analysing the trend of the following residual signals ri(k) :

ˆ( ) ( ) ( ) ( ) ( )fr k k k n k F k kα α αα α= − + + −

ˆ( ) ( ) ( ) ( ) ( )q q q fr k q k q k n k F k k= − + + −

ˆ( ) ( ) ( ) ( ) ( )
z z za z z a a fr k a k a k n k F k k= − + + −

where ni(k) is the measurement noise and Fi(k-kf) is the additive fault modeling function.  Typically this
function is different from zero after the occurrence of the fault at the instant k=kf.  The residual set above has
not been designed to exhibit predefined sensitivities to different faults.  In other words a single measured
quantity should not have impact on a specific residual, based on the structured residuals generation approach.
Therefore the models expressed in the two sets of equations can be used as “virtual sensors” or as “residual
generators” respectively.

Typically the failure modelling function F(k-kf) is described by step and ramp functions representing abrupt
and incipient faults (bias or drift) respectively. Within this effort a linear ramp-like function is assumed. Thus,
the failure is modelled as follows:
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where TR is the duration of the ramp and A is the final value. By varying TR it is possible to model either hard
or soft failures.

The filtered residual vector is processed by an isolation and accommodation logic in order to infer information
about the health status of sensors. When the squared filtered residual exceeds a predefined threshold S10, the
state of the corresponding sensor is declared suspect (fault detection) and a procedure is invoked to decide on
the health status of this sensor.  At the same time the learning of the NN is stopped to avoid that the NN learns
from the “failure-contaminated” measurement.  If the filtered residual exceeds another threshold S20 the state
of the sensor is then declared faulty (fault declaration), a failure procedure is enabled, and an accommodated
variable ya(k) is provided as output.  Thus, the accommodation procedure substitutes the faulty measurement
with the estimation given by the NN. As for any SFDIA approach, the following capabilities are critical:

Failure detectability and false alarm rate (the sooner the fault is detected and the least the number of false
alarm it is, the better is the SFDI system).
Estimation error (The least is the estimation error, the better is the quality of the accommodation).

The used fault isolation and accommodation scheme is only a step toward the development of a realistic and
reliable online scheme, on the other hand, the main purpose of this paper was to investigate, using real flight
data, the suitability of different online neural approximators for fault detection purposes rather than focusing
on failure identification and accommodation issues.
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Neural Networks for On-line Approximation

The two main classes of neural architectures that have emerged in the literature are the Multi Layer Perceptron
(MLP) NN and the Radial Basis Function (RBF) Networks NN.

Multi-Layer Perceptron with Extended Back-Propagation (MLP-EBP).

It is a 3-layer architecture NN, whose detailed description has been already done in the paper, with the
following sigmoid activation function at each of the neurons:

( , , , )
1

net
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f net U L T L

e
−
−= +

+

where U,L, and T are the upper bound, the lower bound and the slope at the origin of the activation function
respectively.  The EBPA updates not only the matrices of the weights between input/hidden layers and
hidden/output layers - W(k) and V(k) respectively - but also the parameters U,L,T at the neurons at the hidden
and output layers.

 “Conventional” Radial Basis Function (RBF)

In the “conventional” RBF NN the estimations m
sy ℜ∈  are expressed as a linear combination of M Gaussian

Basis functions:
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where nx ℜ∈  is the input vector, the parameters µj and σj are the basis center and width respectively. In the
conventional implementation the hidden layer neurons are a priori statically allocated on a uniform grid that
covers the whole input space and only the weight wij are updated. This approach requires an exponentially
increasing number of basis functions versus the dimension of the input space.

Fully Tuned Extended Minimal Resource Allocation Network RBF (EMRAN-RBF).

To avoid the dimensionality problems associated with the conventional RBF, a sequential learning technique
for RBF NNs has been introduced in the literature.  The resulting architecture was named the Resource
Allocating Network (RAN) and has shown to be suitable for online modeling of non-stationary processes with
only an incremental growth in model complexity.  The RAN learning algorithm proceeds as follows: At each
sampling instant, new neurons are added if all the following 3 criteria are met:

Current estimation error criteria: error must be bigger than a threshold:

1)(ˆ)()( Ekykyke ≥−=

Novelty criteria:  the nearest center distance must be bigger than a threshold:
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Windowed mean error criteria:  windowed mean error must be bigger than a threshold:
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If one (or more) of the above criteria are not met, the existing network parameters (the centers µj, the weights
wij and the variances σj) are adjusted using the on-line learning algorithm. To avoid an excessive increase of
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the Network size a pruning strategy can also be applied leading to the so-called Minimal RAN (MRAN).
Furthermore, the adaptation algorithm is called Extended MRAN (EMRAN) when the parameters are updated
following a “winner takes it all” strategy. More precisely, using the EMRAN algorithm only the parameters of
the most activated neurons are updated, while all the others are unchanged. This strategy implies a significant
reduction of the number of parameters to be updated online with just small performance degradation with
respect to the MRAN.

Application to the WVU B777 Flight Data

Four flight data windows of approximately 200 sec each from 4 different flights of the model were used for
the SFDIA experiment.  The first two sets of flight data were used for off line training purposes while the last
two were used for validation purposes. Figure 20 shows a typical time history of q(k) and its estimation,
during the occurrence of a simulated failure  on the pitch gyro at time tf =150 s using the EMRAN algorithm.
To highlight the effects of the failure a “large bias” failure type was selected (A=10 deg/sec TR=1 sec).

ˆ( ) ( )ai iy k y k=  

144 146 148 150 152 154 156 158 

-0.2 

-0.1 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

nominal 

accommodation 

estimated 
failed 

fault 

ACCOMMODATED 
 = NOMINAL 

ACCOMMODATED = 
ESTIMATED 

time 

MRAN-NN

Figure 20 - Failure on the q gyro at tf = 150 sec
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Figure 21 - Residuals associated with a failure on the q gyro at tf = 150

Figure 21 shows the time histories of the residual signals.  The three residuals are generated subtracting the
three EMRAN-generated estimations, respectively to q, α, and az.  After the failure the residuals increase.
However, due to the different sensitivities to a fault on the q gyro, only r_q(k) exceeds the thresholds.  In
particular at t=151.2 s the threshold S1o is exceeded; therefore the learning of the three NNs is preventively
halted.  At t=151.5 s the failure on the sensor q(k) is “officially” declared since r_q(k) also exceeds the
threshold S2o.  From this moment on, the on-line neural estimate of q(k) is used in lieu of the measurement
from the faulty sensor.  The failure identification was possible since the residuals r_az(k) and r_α(k) remain
well below their thresholds.

q (r/sec)
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Neural Networks Comparison

The capabilities of detecting small amplitude and slowly drifting bias failures are strictly related to three
aspects:

level of noise in the measured signal;
level of accuracy of the estimator;
level of the on-line learning rate.

While the presence of measurement noise is independent of the implemented algorithm, the other two aspects
are critically dependent on the performance of the selected estimator.  In particular, the selection of the
learning rate is reached as the result of a trade-off since it should be high enough to allow the learning of a
new aircraft operating condition while, at the same time, small enough to avoid the learning of a faulty
measurement from slow drifting fault.  On this basis, the performances of the two different NN architectures
(EMRAN and MLP-EBP) were compared by varying the level of the learning rate on the data of one
validation flight, where at the time t=tf=90 sec a step of 5 deg/sec (7.4% of the maximum value of the pitch
rate) was artificially injected on the measured q signal to simulate the effect of a sensor failure.

The comparison of the performance of the two schemes is performed through the evaluation of different
SFDIA indicators: TLE and TAE.  TLE is the time in which a sensor is declared suspect while TAE is the
time at which it is finally declared faulty. To evaluate the performance of the detection/identification system,
the detectability ratio (DR) between the main peak of the filtered residual signal during the failure transient
(90 < t < 100) and the peak of the filtered residual before failure (0 < t < 90) is considered.  This ratio
quantifies the detectability provided by the scheme.

Table IV – EMRAN-RBF; ηo=0.0001

L.R.( η � 0 ηo 2ηo � 4ηo
TLE 93 93.39 93.71 94.71
TAE 93.89 94.25 94.97 95.95
%LE 0 0 0 25.14737
%AE 0 0 0 25.61053
DR 11.63651 11.49651 12.35879 12.19832
MEE -1.73646 -2.04047 -2.39899 -3.95824
STDEE 2.452785 2.407548 2.369341 2.202287
POWEE 9.031454 9.959815 11.36895 20.51775

Table V – MLP-EBPA; ηo=0.00006

L.R. ( η � 0 ηo 2ηo � 4ηo
TLE 94.74 94.22 94.32 95.32
TAE 95.82 95.66 95.76 96.44
%LE 3.9 0.726316 0.084211 7.942105
%AE 0 0 0 9.657895
DR 3.588593 4.149321 4.352193 3.53532
MEE -2.30202 -2.29437 -2.44726 -3.49016
STDEE 2.322125 2.322165 2.320881 2.167919
POWEE 10.69157 10.65659 11.37558 16.88107

Furthermore, the time percentage %LE in which a sensor is declared “suspect” before a true failure detection
is reported to assess the false detection (false alarm) rate.  Similarly the time percentage %AE in which a
sensor is declared “faulty” before a true failure declaration is evaluated to assess the false accommodation
rate.  Finally, the parameters MEE(k), STDEE(k) and POWEE(k) are introduced to evaluate the goodness of
the accommodation system. These parameters represent the mean, the variance and the power of the absolute
estimation error over the whole data file.
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Table IV and V show these results for the two architectures.  Analysing the results in Table V, some
conclusion can be drawn for the MLP approximator.  For moderate values of the learning rate a substantial
decrease in false alarms is observed.  An increase in the detectability ratio DR can be seen without a
corresponding increase in the power of the error (POWEE).  The price to pay is generally an increase in the
delay for failure declaration (TLE, TAE); however, this effect is relatively modest.  These results highlight the
benefit of introducing an on-line learning scheme, at least for MLP approximators, to improve the degree of
reliability of the detection scheme and to guarantee satisfactory performances in all the working conditions.
However the learning rate cannot be increased arbitrarily; in fact, an excessive value increases the possibility
that the SFDIA scheme “learns” a faulty pattern before a failure is declared and properly accommodated.  This
risk is confirmed by the analysis of the last columns in the tables, where high learning rates prevented the
detection of the failures.  This is also consistent with a significant decrease in the detectability ratio.
Furthermore higher learning rates compromise the integrity of the global approximation capability of the NN,
which can have adverse effects at post-failure conditions when the neural approximator has to supply reliable
estimates using only the learned data. The fact that for low learning rates the post-failure POWEE index takes
on small values shows the possibility of using the neural estimator as “virtual sensor” after a failure
declaration. The RBF-EMRAN NNs have generally shown better performance. Their approximation and
generalization capabilities are confirmed by the absence of false alarms even without learning, by the high
values of the detectability ratio, and by the lowest values of the POWEE index.

Fault Tolerance in Flight Management

Management of the aircraft formation can be centralized or decentralized.  In the former case, one formation
manager exists that acts as a supervisor for all the aircraftand manages the topology of the channels they use
to exchange information among themselves.  This manager can be one of the aircraft or ground-based.  The
major advantage of ground-based management is the capability to react to and reach decisions from a possibly
higherlevel of "intelligence" than that achievable by on-board computers. In fact, human decision could be
added to the automatic system but this surely introduces a delay in the reconfiguration progress.  A prompt
response is still needed to bring the formation into a safe configurationprior to a ground-based decision.  In a
decentralized management scheme, on the other hand, each aircraft is given a certain level of decision
capability, while the whole formation must be capable of reconfiguring, making decisions, and achieving
mission goals.  In both cases it is important to establish general rules for the information exchange and graph
theory can be used to describe inter-aircraft communication.  The aircraft can be thought of as the nodes of a
graph. The physical communication channels create the arcs in the graph. These arcs are oriented because, in
the most general case, channels are not bi-directional; this is not a limitation, since two nodes can be
connected by two opposite direction arcs to model a bi-directional channel.  The graph must also be connected
because, if two subgraphs exist without any arc connecting them, the aircraft inside the two groups cannot
behave like a formation component, yielding in fact two separate formations.  The communications graph
should be redundant from the standpoint of the capability of propagating information.  In the event of failures,
this redundancy leaves room for reconfiguration.  However, having the capability of using a channel does not
mean that it must be used at all times.  Optimization of available channels under a cost function constraint can
be achieved via graph programming  techniques.

Graph Theory Optimization

The problem of mapping a formation structure with graph theory can be configured as a shortest path
optimization problem.  Suppose that at least one of the aircraft knows the mission reference trajectory.  This
reference trajectory can be seen as the effective formation leader and can be represented in the graph by a
node called Virtual Leader (VL), so that each aircraft that knows the mission trajectory has one
communication channel with the VL.  If a cycle exists, since the graph must be connected, it must contain all
nodes.  However because at least one node has the VL as its only reference, and the VL has no incoming arcs
by definition, the VL and all nodes using the mission trajectory as reference cannot be part of a cycle.  Thus
the graph cannot have any cycle, and the VLwill be the root of the solution tree.
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To solve the shortest path problem, the Dijkstra algorithm  was used.  It has polynomial complexity, it
guarantees optimality of the solution, and it is deterministic; that is, starting from the same conditions, all runs
lead to the same solution.  The Dijkstra algorithm can be modified to obtain the optimal redundant channels
among those outside theoptimal arcs set.  Suppose we need m total possible channels for each node; that is, m-
1 redundant channels.  The unmodified algorithm can still be used to find the optimal solution. At the end of
the optimization procedure, the nodes' potentials are frozen.  Then for all nodes i in the S set, select m-1
incoming arcs that have the minimum value of d'(i) = d(j)+Cji, where j is a possible redundant preceding
node, and order for increasing values of d'(i).  This modification computes sub-optimal solutions. The arcs
chosen with this technique can be considered suboptimal because they are the second-best choices.  After
removing the incoming arc of a node belonging to the optimal path, the new optimal incoming arc that a new
run of the Dijkstra algorithm will produce is the first one of this redundant arcs list.  Figure 22 shows the
graph of a sample formation.  While the VL is connected with all aircraft, not all possible inter-aircraft
connections are present. An arc's weight is identified by a positive number.  The figure also shows the result
of the modified Dijkstra algorithm. The optimal path, in solid line, and each node.  In this case, m=3 but a
node might not have the two required redundant channels because it has fewer than m incoming arcs; this is
the case for node 1.  When node A switches reference and uses a sub-optimal path, its potential increases, and
a reconfiguration procedure must be run on all the nodes of the sub-tree that originates from that node.  In
fact, a new global optimization would be needed, but the potential of all the nodes that do not have any
incoming optimal path from A cannot be affected, because these surely have a lower cost path to the VL.
Since the detected failure and the new node A potential after reconfiguration must be propagated to the nodes
that belong to the optimal A sub-tree path only, the same communications channels used for formation-
keeping data can also be used to exchange potential updates.  Furthermore, since after all nodes have
completed the  reconfiguration, the new graph is optimal, this procedure can be repeated in case of successive
faults without ever having to reconsider optimization of the whole graph.  This means that any number or
combination of successive faults can be managed with this sub-tree-based technique without compromising
whole-graph optimality.

Figure 22.  Fault Tolerant Communications Link for Formation Flight

The following simulation presents the reconfiguration of the formation, shown in figure 22, following a fault
in the aircraft 3 transmitter.  The failure happens during a 180-deg turning maneuver.  As shown in the figure,
aircraft 6 uses aircraft 3 as the reference for its formation-keeping control system.  The first redundant channel
for aircraft 6 is that coming from aircraft 5.  When aircraft 6 detects a fault, it reconfigures itself to use aircraft
5 as reference.  Figure 23 shows the distance of aircraft 6 from its ideal trajectory compared to that of the
same simulation without failure.  The red line shows that, after the fault at = 50 sec, a fast transient is
followed by a reconfiguration that brings the aircraft back into a stable position inside the formation. The two
traces of distance error do not have to join, in this case, because the performance of the controller is different.
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Figure 23.  Failure Reconfiguration during Formation Flight

Conclusions

This paper has presented some results of a study undertaken with the goal of showing the potential of online
learning neural networks for adaptive control at non-linear conditions.  Particularly the paper has shown
successful simulations of identification and (identification + control) using an indirect approach for non-linear
SISO systems.  The paper presented also some issues related to the use of neural architectures in the area of
sensor and actuator failure detection and identification.  The main focus of the work was the problem of
achieving satisfactory performance for on-line learning, and subsequent potential for on-board implementation
on flight vehicles having low and/or no physical redundancy.  To this end standard gradient-based neural
networks were considered and adapted to the above constraints.  A NN-based scheme SFDIA has been
analyzed using experimental flight data from the WVU B777 research aircraft model. T he scheme was
implemented with 2 neural architectures, that is the MLP-EBPA NN and the RBF-EMRAN NN.  The scheme
has shown to be successful in the detection, isolation and accommodation of failures “injected” on the WVU
B777 flight data.  Finally some issues on failure accomodation in formation flight management have been
addressed using linear programming techniques.
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1 Introduction

An application of hybrid optimization techniques to airfoil design with Navier-Stokes equations is here pre-
sented and discussed. The greatest obstacle in the use of Navier-Stokes equations with evolutionary optimiza-
tion procedures is the huge computational effort required. To overcome this limit, several approaches have been
suggested, that range form parallel genetic algorithms [1, 2] to approximated fitness evaluation [3, 4] to hybrid
techniques [5].

These three approaches can be profitably combined and an example will be here given related to transonic
airfoil design.

The lecture is organized as follows: an outline of hybrid optimization techniques will be given then the par-
allel hybrid genetic algorithm will be presented. Thereafter an application example will be reported, and finally
some ongoing developments about the hybrid approach based on gradient computation through the adjoint to
Navier-Stokes equations will be described.

2 Hybrid genetic algorithms

Hybridization has been one of the first techniques adopted for improving genetic algorithm performance, while
keeping the desirable flexibility features of genetic algorithms [6].

In the optimization context, hybridization can be defined as the mixing of two or more search techniques
with, possibly, complementary features.

The genetic algorithm itself, even in its simplest implementation, can be considered as a hybrid optimization
technique, where selection, mutation and crossover cooperate in the same optimization process.

Figures 1 and 2 show how the genetic algorithm can be extended through the addition of a hill climbing
operator. In the first scheme the hill climber receives in input the whole population belonging to the current
generation, while in the second one an intermediate selection process chooses a subset of elements that will be
refined through hill-climbing.

A hybrid algorithm requires care in balancing the various components of the search procedure. Indeed, if
high-rated solutions are injected in the population at an early evolution stage, this may adversely affect popu-
lation diversity and force the evolution in wrong directions. The way to avoid this depends, in general, on the
particular optimization technique introduced. If a gradient based technique is used as a solution refinement op-
erator, it may be useful to balance the improvement rate of both techniques by stopping the hill climber after
a few iterations. However, the iteration number choice is mostly a question of practice and experience, and it
should take into account both optimization algorithm and problem features.

Another point that requires special care when using hybrid techniques is encoding. Often, indeed, a special-
ized optimization technique relies on a particular encoding of the problem variables that may play a key role in
the efficiency of the method. Therefore, whenever possible, it is worthwhile to extend to the genetic algorithm
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Figure 1: A simple hybridization scheme between a genetic algorithm and a hill climber.
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Figure 2: A more complex genetic-hill climber coupling scheme.

the encoding of the specialized technique. On the other hand, the simple binary encoding used by many genetic
algorithms may cause problems to the specialized algorithms if the conversion of data is not carefully handled.
For example, if a binary genetic algorithm does not use enough bits for variable encoding, the improvement
obtained using a gradient based hill climber may be lost when re-encoding the variables in binary form.

The hill climber operator adopted here is a gradient search based on BFGS algorithm [7]. Indeed, the fitness
functions of the presented applications are differentiable, for which gradient based techniques are much more
efficient to locally improve a given solution. The genetic algorithm developed adopts a bit string codification
of the design variables; anyway, this does not prevent the use of operators requiring real number list encoding,
such as extended intermediate crossover and word level mutation [8]. In this cases, the binary string is decoded
into a real numbers list, the operator is applied and the modified variables set is encoded back into a bit string.
This scheme allows the use of a free mix of different type of operators. The hybrid genetic algorithm operates as
follows: through the application of the selection, crossover and mutation operators, an intermediate generation
is created from the current one; afterwards, if the hybrid option is activated, some randomly chosen individuals
are fed into the BFGS based operator to be improved, and then introduced into the new generation.
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3 Parallel genetic algorithm

The hybrid genetic algorithm here described has two points that can be executed in parallel: the evaluation
of the new population members after the mutation and recombination phase and the evaluation of the gradient
through finite differences in the gradient based hybrid operator. The parallel programming model adopted relies
on shared memory multiprocessing and the parallelism is implemented at the thread level using the standard
POSIX thread interface.

The same code base works on a SGI POWER CHALLENGE system with 16 R-10000 processors and on a
Linux PC-cluster with eight processors and the MOSIX clustering software [9].

execute objective
evaluation program

and
write results in a shared

to MASTER process
memory area accessible

Thread  

for each

the subset

signal to MASTER
send completion

element in

MASTER process

i

send an unlock signal to

area reserved to PROCESS(i) input
write input data in a shared memory

for each
population

subset

completion signal from
wait for

all the PROCESS(i)

the PROCESS(i)

split population in subsets
of max. NPOP/NPROC+1 elements

START

process
signal from MASTER

wait for unlock

Figure 3: Parallel evaluation loop.

The algorithm is organized following the master-slave paradigm. Figure 3 shows the architecture of the
parallel evaluation loop.

In the initialization phase that precedes the first execution of the evaluation loop, the master process creates
a pool containing a number of processes, equal to the maximum number of threads available for the computation
(NPROC). The child threads are immediately put in a wait state, and they will remain in such a state until they
receive a “go ahead” signal from the master to start the computation. This choice avoids the inefficiency of
creating a child process every time a computation is needed and killing it at the end.
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When the master process enters the evaluation loop, it splits the population, of size NPOP, in slices of maxi-
mum NPOP/NPROC+1 elements and then each slice is assigned to one of the child threads. Afterwards, a signal
is sent to the child, through a standard POSIX semaphore, so that it begin to evaluate its slice. When the child
terminates its computation, it sends a completion signal to the master (using another POSIX semaphore). The
master waits for the completion of all child processes in a synchronization point. The child processes are ter-
minated at the very end of the program, when all the evaluation loops related to each generation and gradient
evaluation loop have been completed.

This architecture has maximum efficiency when each thread has an even computational charge. If this is
not the case, the computation process can loose efficiency because the master has to wait at the synchronization
point for the completion of the slowest process. A partial solution to this problem consists in activating more
threads than available processors (e.g. 8 threads on a four processor machine). If this is not possible, then the
algorithm should be modified in order to redistribute dynamically the computational charge to the child threads.

4 Aerodynamic flow solvers

Two flow solvers with different level of accuracy have been adopted for the objective function computation of
the presented design exercises. The first one is the in-home developed ZEN Navier-Stokes solver [10] with
Baldwin Lomax turbulence model [11]. The second one is Drela’s MSES code [12] that is based on a finite-
volume discretization of the Euler equations on a streamlined grid. The viscous region is computed using an
integral boundary layer based on a multi-layer velocity profile representation. The inviscid and viscous regions
are coupled using displacement thickness.

The boundary layer code is used both as a low-fidelity solver, and as a helper for ZEN code. Indeed, when
constant lift coefficient (cl) is required, a suitable angle of attack for ZEN is guessed using MSES; after a first
computation with ZEN, the angle of attack is corrected using the ∂cl/∂α computed with MSES.

5 RAE 2822 airfoil optimization

The optimization problem requires the minimization of the drag coefficient obj = cd, with control on lift co-
efficient and maximum thickness. The design point is fixed at: M = 0.68, Re = 5.7 × 106, cl = 0.56. The
starting geometry is the RAE 2822 airfoil. Transition is fixed to x/c = 0.01.

The airfoil shape is defined as a linear combination of an initial geometry y0(x) and some modification func-
tions, fi(x), i = 1, . . . , n:

y(x) = y0(x) +
n∑

i=1

wifi(x) (1)

where wi are the design variables.
The modification functions used here are reported in Table 1 with ξ = x/c ∈ [0, 1].

5.1 Optimization using simple GA and Euler+BL

A first optimization run has been performed using the genetic algorithm without hybrid operators, and the MSES
solver only. The geometry was represented using 20 design variables (10 for the upper surface and 10 for the
lower) chosen among the polynomial, Hicks-Henne and Wagner functions. Three subsequent runs of the parallel
GA were performed, and 10 threads were active in each run. The GA parameters are reported below:

Variables encoding 32 bit
Selection 3 step R. W.
Crossover one-point, pc = 1
Mutation bit level, pm = 0.01
Population size 40
Generations 40
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Hicks-Henne Legendre

0.888 (1− ξ)√ξe−13.28ξ 0.42 (1− ξ)3√ξ
0.57 (1− ξ)√ξe−5ξ 0.946 (1− ξ)3 ξ

0.1 sin3
(
πξ0.431

)
0.136 (1− ξ)3 (12ξ − 10ξ2

)

0.1 sin3
(
πξ0.757

)
(1− ξ)3 (225ξ5 − 630ξ4 + 560ξ3 − 220ξ2 + 30ξ

)

0.1 sin3
(
πξ1.357

)

0.1 sin3
(
πξ3.106

)

Linear Wagner

0.2ξ 0.87

(
2 arcsin(

√
ξ)+sin(2 arcsin(

√
ξ))

π − ξ
)

0.24

(
sin(2k arcsin(

√
ξ))

kπ +
sin(2(k−1) arcsin(

√
ξ))

π

)
k = 2, . . . , 6

Polynomial Rear loading

0.52
(
0.5ξ3 − 1.5ξ2 + ξ

)
6625000(1−ξ) ξ15e1/5−20ξ

0.4
(
ξ − ξ2

)
17500000(1−ξ) ξ18e1/4−20ξ

0.52
(
0.5ξ − 0.5ξ3

)
44440000(1−ξ) ξ22.66e7/20−20ξ

90000000(1−ξ) ξ30e1/2−20ξ

Table 1: Modification functions used in the design examples.
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Figure 4: Optimization history and obtained shapes in the Euler+Bl optimization runs.

12-5



The optimization history, and the initial and final shapes are reported in figure 4. The initial drag coefficient
was cd = 0.009070 at α = 1.9216◦, while the final one resulted to be cd = 0.008645 at α = 1.5619◦. A
subsequent analysis with the ZEN NS flow solver on the same configurations, however, showed different trends,
and there was no appreciable difference between the drag coefficients of the two configurations. Therefore, it
was decided to use the initial RAE 2822 as starting point for the subsequent optimization pass with the Navier-
Stokes solver.

5.2 Optimization using hybrid GA and NS

The result of the previous run were used to select the design variables that had the strongest effect on the objective
function.

A 256×56 C-shaped grid was used for each Navier-Stokes run. A three level multigrid acceleration strategy
was used.

0.01034

0.01035

0.01036

0.01037

0.01038

0.01039

0.01040

0.01041

0.01042

0.01043

0 5 10 15 20 25

c d

objective evaluations

BFGS - 4 design var.
average

Figure 5: Optimization history with BFGS algorithm, Navier-Stokes equations for drag evaluation and four de-
sign variables.

A first set of 4 design variables was identified and a simple BFGS run was performed. The maximum num-
ber of BFGS steps was fixed to 10. The optimization history is reported in figure 5. The optimization process
terminated when the convergence criteria were meet, after three gradient evaluations and a total of 23 objec-
tive function evaluations. As can be observed, a small drag reduction was obtained (0.7%). It is worth to note
that in figure 5, as well as in all the following evolution histories reported, all the objective function evalua-
tions required by the optimization algorithm are reported, including those used to compute the gradient by finite
differences.

The number of design variables was then extended to eight. Here three different run were performed, The
first one was a simple GA with 8 population members that ran for 15 generations. The second one was a hybrid
GA that ran for 4 generation, with a population size of two elements. The BFGS was applied to each element,
and the number of BFGS steps was fixed to 10. This produced a total of 62 objective function evaluations. The
last hybrid GA was instead characterized by a population of eight elements and the BFGS activation probability
was set to 6% with three descent steps allowed. After 7 generation the optimizer required 82 objective calcu-
lations. The evolution history for these three runs is reported in figure 6. In run 3 the best solution had a drag
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coefficient equal to 0.010295 while the starting one was cd = 0.010415. The cp distribution of the original and
the optimized airfoil are reported in figure 7, the cf comparison is reported in figure 8, and, finally, the Mach
field around the airfoil is reported in figure 9.
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0.01035

0.01040

0.01045

0.01050

0 20 40 60 80 100 120 140

c d

objective evaluations

RUN 1
RUN 2
RUN 3

Figure 6: Evolution history of the three runs with eight design variables and Navier-Sokes solver.

6 Use of the adjoint method for gradient computation

A planned improvement of the hybrid genetic algorithm is the introduction of the adjoint method in gradient
computation. The major advantage of this approach is that there a higher computational efficiency is obtained.
Indeed, by solving the adjoint equations, one obtains all of the gradient components.

A multi-block continuousNavier-Stokes adjoint equation solver for two-dimensionalfields was implemented.
The numerical solutionof the adjoint equations is obtained by using a first-order time-dependent technique based
on a finite volume discretization. The solver computes the fluxes at cell interfaces using a flux-vector splitting
technique. In a similar way, the boundary conditions are imposed on the numerical fluxes at the computational
field edges.

At the moment the adjoint based procedure is being developed as a stand-alone code, whose scheme is re-
ported in figure 10. The gradient computed using the adjoint equation set is then used by a conjugate gradient
optimization routine. After the validation phase, the developed solver will be used as core of a new hybrid op-
erator of the genetic algorithm.

The functional to be minimized is:

L = ω1D + ω2
(L− L∗)2

2

where D is the drag L is the lift, L∗ is the desired lift and the ωi are weights.
The first case considereds corresponds to the the case of fixed lift without constraints on the geometry. The

absence of constraints on shape will lead, as will be evident in the first example reported, to a clear tendency to
thickness reduction and to rear loading the airfoil.

Figure 11 reports some results related to the design problem previously defined (RAE2822, M = 0.68,
Re = 5.7 × 106, cl = 0.56) when no control on maximum thickness is imposed. In particular, drag, penalty
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Figure 7: Comparison between initial and final cp distributions in NS run 3.
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Figure 8: Skin friction coefficient comparison in NS run 3.

on lift, and initial and final airfoil shapes are reported. The gradient is computed point-wise, i.e. each grid point
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Figure 9: Mach field around the optimized airfoil of run 3.

on the airfoil boundary is a design variable. The gradient analytic expression involves second as well as third
derivatives of the flow variables. As the flow field is only second order accurate in space, it can occur that the
computation of such derivatives is not reliable in regions of abrupt flow changes, as for example near the front
stagnation and close to the rear separation. For this reason the point-wise gradient was smoothed using a Fourier
filter. After such filtering the conjugate gradient method is able to nicely decrease the functional L.

Figure 12, instead, reports the result obtained when an a-posteriori control on maximum thickness is im-
posed. This is obtained projecting, at each iteration, the airfoil modification vector along a direction in which
the modification in the maximum thickness section is zero. It is worth to note that while in the first run over 400
field computations were allowed, in this second one only about 160 evaluations were allowed in order to save
computational resources.

7 Conclusions

Navier-Stokes flow solvers can be profitably used for aerodynamic shape design with evolutionary optimizers,
provided that attention is paid to computational efficiency. In particular, a pre-analysis of the design space with
lower fidelity tools is highly recommended to avoid waste of computational resources.

Furthermore, parallel computing and advanced approaches like gradient computation through adjoint, pave
the way for challenging industrial applications.
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Conceptual Missile Design Using Genetic Algorithms

Murray B. Anderson
Sverdrup Technology Inc./TEAS Group

308 West D. Avenue
Building 260

Eglin Air Force Base, FL 32542, USA

Executive Summary
This paper was written to show the potential of using an intelligent systems tool to rapidly
conduct conceptual missile design studies.  Rather than having separate teams of engineers
developing/proposing discipline-specific designs (i.e. aerodynamics, propulsion, flight
control system), a computer can quickly learn how to design a missile as an overall “system”
to effectively defeat difficult targets.  This paper was an invited paper presented at a joint
NATO/Von-Karmen-Institute Workshop on Intelligent System held in Brussels, Belgium
during May of 2002.

Abstract
For these preliminary design studies, a pareto genetic algorithm was used to manipulate a
solid rocket design code, an aerodynamic design code, and a three-loop autopilot to produce
interceptor designs capable of defeating two different target scenarios.  The first scenario is a
ground-launched interceptor engaging a high-speed/high-altitude target like a re-entry
vehicle.  The second scenario is an air-to-air engagement against a highly maneuverable
target.  Twenty-nine design variables were required to define the optimization problem, and
two primary goals were established to access the performance of the interceptor designs.
Design goals included minimizing both miss distance and intercept time. The genetic
algorithm was able to quickly develop several basic types of designs that performed very
well for the individual target scenarios.

Introduction
With the addition of guidance, an autopilot and an airframe with movable control surfaces,
basic rocketry, expands into a more lethal and much more precise means of waging war.
Rather than increasing the size of the warhead being delivered (to make-up for a loss in
delivery accuracy), modern weaponeering has tended to use a small warhead coupled with
an accurate control system.  For ground launched systems, ideas such as "smart rocks" and
"brilliant pebbles" that sprang from early Strategic Defense Initiative (SDI) research were
based on the belief that the energy delivered by a small, fast moving projectile without an
explosive could be as lethal as a less accurate system with an explosive warhead.  Similarly
for air-launched ground attack weapons, Vietnam proved that delivery accuracy was
paramount to defeating tough targets. The Air Force subsequently devoted billions of dollars
to the development of precise warhead delivery systems.  The Persian Gulf War showed the
benefit of these highly accurate weapon systems that were developed.  While it is difficult to
argue with the success of modern weapons, these systems share a common design
philosophy that is somewhat lacking.  When a system has a guidance system and autopilot,
there is a tendency to compensate for less than stellar aerodynamic designs by shifting more
and more of the delivery problems over to the autopilot.  As a result, autopilots are typically
very good and very robust, but the airframe and aerodynamics of the overall system are

Paper presented at the RTO AVT Course on “Intelligent Systems for Aeronautics”,
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almost an afterthought.  Overall system performance and system capability, therefore,
suffers because of the over-reliance on the autopilot to compensate for weaknesses in the
aerodynamic performance of the weapon system.  The goal of this research is to let an
artificial intelligence tool, a genetic algorithm, design the aerodynamic shape while, at the
same time, designing the propulsion system and determining key autopilot variables.  This
all-at-once approach to missile design is intended to provide a system capable of producing
good aerodynamic shapes in addition to the good performance expected from an autopilot.

Following a discussion of the system components being manipulated by the genetic
algorithm in this research, the operating modes of the genetic algorithm are discussed.
Lastly, the results of the rapid design studies for the two target scenarios are presented.

Guidance Algorithm
Guidance is the first key component to accurately commanding a missile to a target.  The
guidance algorithm used in this study is standard proportional navigation (called ProNav).  A
ProNav system commands accelerations normal to line of sight between the missile and the

target, proportional to the closing velocity (Vc) and the line of site rate ( λ� ).  In equation
form, this relationship is

λη �
cc VN '=  Equation 1

where N' is the effective navigation ratio or gain.  The closing velocity and line of sight rate
are typically determined by a Doppler radar and seeker, respectively.  For this research, it is
assumed that there is a perfect seeker and a perfect radar system so that the target position
and velocity are known exactly.  For preliminary design studies, these two assumptions are
appropriate.  However, to make the autopilot performance variables (like damping ratio)
more meaningful, the target position/velocity model was run at a slightly slower time step
than the autopilot itself.

Before discussing the impact of the effective navigation ratio on the guidance system, it is
appropriate to discuss how the commanded accelerations make their way into the missile
control system.  As a two-dimensional example, consider the yaw guidance plane shown in
Figure 1.  As this figure shows, from an inertial coordinate system viewpoint, the
acceleration commands generated by ProNav are in the Earth-centered coordinate system
(X,Y,Z) rotated through the line-of-sight angle.  The commanded accelerations in the inertial
axis system are then

)sin(

)cos(

λη
λη

cY

cX

a

a

−=
=

These accelerations, and the ones from the corresponding X-Z plane, must be transformed
into the missile body axis system before they can be used to move control surface to point
the missile toward the target.
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Figure 1.  Guidance Command Schematic

The effective navigation ratio controls the behavior of the autopilot throughout the flight of
the missile.  Based on equation 1, it is obvious that, for a fixed closing velocity and fixed
line-of-sight rate, higher effective navigation ratios mean higher commanded accelerations.
Since it is the goal of the ProNav guidance law to eliminate the line-of-sight rate, higher
effective navigation ratios translate into more active maneuvers early in flight in order to
minimize the maneuvers near the end-game.  For non-maneuvering targets, there is an
obvious advantage to using a high effective navigation ratio.  Typical ranges for this
parameter are 3 to 5 (unitless) according to Zarchan1 for tactical weapon systems.  So, given
this variation, the effective navigation ratio is a variable the genetic algorithm should
determine.

As the missile enters the endgame maneuvers near the target, the line-of-sight rate will
approach infinity as the missile passes (or passes through) the target and, therefore, the
commanded accelerations will also approach infinity.  It is common to limit the total
acceleration commands (circular total acceleration commands) for flight systems and, for
this study, the total acceleration was limited to 90 G's.  Lateral accelerations greater than 90
G's would likely cause failure of the missile electronic components, if not failure of the
structure itself.

Autopilot
The autopilot chosen for this study is the so-called three-loop pitch/yaw autopilot.  This
autopilot design was chosen because of its simplicity, because it is actively being used in
several existing weapon systems, and because it is possible to analytically calculate the
proper system gains (for all flight conditions) based on a few specified autopilot
performance parameters.  Since only the pitch and yaw channels are being modeled, the
airframe is free to roll, and does so through induced roll rates as the missile pitches and yaws
during intercept.  This approach does reduce the turning efficiency of the missile but, as long
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as the roll angles are tracked accurately, the autopilot is able to compensate.  Often in
preliminary design studies2 the roll autopilot is modeled as a perfect stabilizer and is,
therefore, neglected entirely.  In this current research, inertial acceleration commands from
guidance are simply rotated to the missile body axis system and the tail control surfaces
respond with appropriate combined pitch/yaw commanded deflections to steer the missile to
the target, regardless of the roll angle.  The three loop autopilot (see Figure 2 for a schematic
of one channel) takes acceleration commands from guidance and outputs the elevator/rudder
commanded deflection angles that should be required in order to achieve the commanded
accelerations.  These tail control surface deflections produce a response through the airframe
as a pitch/yaw rate and as a longitudinal/lateral acceleration.  The rates and accelerations are
fed back through the autopilot to dampen the system.  For this study, it was assumed that the
Inertial Measurement Unit (IMU)was perfect, meaning that the actual and measured
accelerations and rates are identical.  For simplicity, it is also assumed that the "perfectly
measured" accelerations include appropriate translations to compensate for center-of-gravity
movement as fuel is expended.  In real systems, there will be lag and measurement error in
the IMU, but for this preliminary design study, these simplifications are appropriate.  The
actuator was modeled as a 2nd order system1 with a damping of 0.7 and a natural frequency
of 125 rad/sec.  These simplifications mean that the system is 5th order if the airframe is
considered to be 2nd order response.
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Figure 2.  Basic Three-Loop Autopilot

As Figure 2 shows, there are plenty of feedback opportunities in the system to help maintain
a robust controllable system for very diverse missile aerodynamic characteristics.  The
autopilot should be designed to provide a fast, well-damped response to acceleration
commands.  This task may seem easy at first, but consider what happens from the time a
missile is launched to the time all the fuel is burned.  It is very likely that the system center
of gravity will have moved forward (stabilizing movement toward the nose), changing the
airframe from a statically unstable system (center of pressure forward of the center of
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gravity) to a stable system.  For ground-launched missiles, the velocity of the missile may
also have changed from 0 ft/sec to over 4,000 ft/sec and the altitude may have changed from
sea level to over 100,000 feet.  Throughout all these changes, the autopilot must adapt or the
missile will be uncontrollable.

The three loops shown in Figure 2 serve specific purposes.  The rate damping and synthetic
stability loops provide proportional plus integral compensation, effectively damping the
airframe poles3.  The synthetic stability loop was originally added to compensate for
statically unstable airframes.  The acceleration loop controls the lateral acceleration of the
missile.  The autopilot gains are KDC, KA, ωi, and KR.  All that needs to be done is to
calculate the appropriate values for these gains.  One of the reasons for choosing the three-
loop autopilot is that these gains can be determined analytically from the aerodynamics of
the airframe and from some specified performance parameters for the autopilot.  These
performance parameters are the damping ratio (ζ), time constant (τ), and crossover
frequency (ωcr).  The system-damping ratio governs the sensitivity of the system (i.e. small
heading errors should not produce large elevator/rudder deflections) and limits overshooting
the commanded acceleration to help protect the structural integrity of the system and the
electronics.  The time constant is a measure of how fast the system responds to acceleration
commands.  For example, a 0.3 second time constant means that 63 percent of the
commanded acceleration should be achieved in the first 0.3 seconds.  The crossover
frequency (when gain falls below 0.0Db) is a measure of autopilot robustness when higher
order dynamics are not modeled.  Since the system analyzed here is a 5th order system, the
crossover frequency essentially determines how fast the autopilot responds during homing.
Higher crossover frequency values mean a faster autopilot but, if the autopilot is too fast, it
can cause instability in the actuator.  A good rule of thumb1 is that the crossover frequency
should not exceed 1/3 of the bandwidth of the actuator.  In this study, the actuator was
assumed to have a natural frequency of 125 rad/sec and a damping of 0.7, so the highest
crossover frequency that can be safely used should be around 41.66 rad/sec to maintain
stability.  This particular instability is the reason why, in preliminary design studies,
determining a good estimate of the crossover frequency can only really be done with a 5th

order system or higher.  Evaluation of 3rd order systems (perfect actuator) is usually a first
step to analyzing a 5th order system (actuator included), followed by an 11th order system
that includes actuator dynamics, IMU response, and structural dynamics2.

The equations that determine the four autopilot gains (at a single flight condition) from the
aerodynamics and autopilot performance parameters are omitted in this discussion.  These
equations can readily be obtained from multiple sources. , However, it should be noted that
Nesline2 provides general equations that work well even for very unstable missiles, while
Zarchan1 does not.  The basic premise of these equations is that the aerodynamic derivatives
(like Cmα and Cmδ) and expected aerodynamic damping provide a means of determining the
linear response that a system is capable of delivering at a given dynamic pressure.  If the
system response can be estimated, appropriate gain schedules can be developed to achieve
the desired autopilot performance levels.

It should also be noted that, for the ground launch case, the autopilot is not activated until
0.4 seconds into the flight to give the system time to generate enough speed to make fin
commands meaningful.

Aerodynamics Code
Washington4 developed AeroDesign, the aerodynamic prediction methodology used as the
basis for this study.  AeroDesign was modified to include two axial force considerations that
were not part of the original software.  First, the fineness ratio of the nose of the missile is
compared to a Sears-Haack5 body and, if the nose is not slender enough, a drag penalty



13-6

proportional to the nose bluntness is added to the baseline axial force coefficient.  The
second axial force coefficient correction was implemented to correct for cases where the
rocket nozzle exit diameter actually exceeds the diameter of the body.

AeroDesign was further modified to provide aerodynamic damping derivative estimates and
linear aerodynamic coefficient contributions for deflected control surfaces in the pitch and
yaw planes in a format and flight condition range compatible with a guided six-degree-of-
freedom simulation.

Rocket Performance Code
The solid rocket performance software used in this study is an erosive burning star grain
design program that is suitable for preliminary design studies.  There are some fundamental
assumptions made in the formulation of the software that are suitable for rapid evaluation of
preliminary design.  The major assumptions are:

1. The pressure varies throughout the chamber, however, the pressure is calculated only at
the head end (P1 ) and at the grain end (P2).  The chamber pressure (PCH) is then defined
as the average of these two pressures.

2. The burn rate of the propellant also varies over the entire surface and is subject to

erosive burning. The burning rate at any point can be defined as ( )VkaPr n
CH ⋅+= 1 ,

where k, a, and n are burning rate constants.  Since the chamber pressure is calculated
only at the head end where V1 equals 0, and at the aft end of the grain, where V equals
V2, the velocity is averaged to calculate an average erosive burning rate.

3. The grain burns on the edges normal to the centerline of the rocket only (i.e. no end-
burning so xgl is constant) at the average burning rate.

4. The flow is isentropic between the aft end of the grain and the throat.

5. The flow obeys the perfect gas law.

6. The chamber pressure varies with time, but is essentially constant during the discharge
of a single particle.

7. The flow is one-dimensional and steady.

8. There is no deformation of the propellant due to acceleration, pressure, or viscous forces.

9. The temperature is uniform throughout the grain, but the grain is temperature sensitive
(this is a fuel characteristic).

The rocket motor to be designed by the genetic algorithm has certain definable
characteristics such as the strength of the combustion chamber material, which should be
known before the design process begins.  For this study, the following rocket characteristics
were used:

1. Propellant is ammonium perchlorate (80%).

2. Initial temperature of the propellant is 20°C.

3. The design chamber pressure (i.e. maximum chamber pressure for case structural
design) is 3000 psi.  Chamber case thickness is determined by using a factor of safety of
1.5 given this maximum chamber pressure.

4. The allowable stress in the case is 195,000 psi.

5. The factor of safety is 1.5.

6. The case is made of a steel alloy with a density of 0.28 lbm/in^3.
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7. The nozzle is made of an aluminum alloy with a density of 0.19 lbm/in^3.

For this study, ammonium perchlorate (80%) was chosen but there is no reason why the
propellant choice could not be another design parameter if there is a database of propellant
burning characteristics available.  For ammonium perchlorate, the erosive burning rate
constant k is 1.0E-4 sec/ft, and the burning rate constants a and n are 0.15 and 0.4,
respectively.

Six-Degree-of-Freedom (6-DOF) Simulation
The equations of motion used in this 6-DOF were obtained from Etkin6 assuming that (1) the
missile structure is essentially rigid, (2) there are no rotating masses internal or external to
the missile, and (3) there are no significant cross products of inertia.  Using Etkin's notation,
longitude is measured positive from west to east, which is opposite from conventional world
maps.  The simulation was modifed so that even though Etkin’s coordinate system is used
exactly, the output of the simulation is converted to standard world map definitions to avoid
confusion.  Also consistent with Etkin, the standard Eulerian definitions of Φ, Θ, and Ψ
were used.  To avoid gimbal lock (θ=90 deg) concerns, quaternions were used instead of the
standard Euler angles during the integration process.  However, all output was converted
from quaternions to Euler angles for output.

The conventional body-fixed acceleration and moment equations were modified to include
aerodynamic damping terms and contributions due to control surface deflections.  For this
study, a tail-control missile was assumed but there is no reason why a canard-control system
could not also be analyzed.  The definitions used for the control surface contributions to the
aerodynamic coefficients were as follows:

1. positive elevator commands produce positive normal force contributions and negative
pitching moment contributions

2. positive rudder commands produce positive side force contributions and negative
pitching moment contributions

For a 5th order system, 19 differential equations must be solved simultaneously (15 for the
quaternion system of equations and 4 for the elevator and rudder).

Link to GA:  GA with Aerodynamics, Propulsion, Six-DOF,
Guidance, Autopilot, and Target

Linking the separate software codes to the genetic algorithm was done in a modular fashion
so that other modules could be later substituted for the ones used in this study.  The genetic
algorithm passes all design variables down to the Six-DOF via one subroutine call statement
(single line of interface).  The Six-DOF then calls the other components, including the mass
properties routine that calculates the component inertias and the center of gravity for the
system.  For this study, the payload was assumed to weigh 50 lbf and the electronic
components/actuators weighed an additional 50 lbf.

Variables Governing Design
There are nine variables that govern the solid rocket motor design, fourteen variables that
govern the external shape of the vehicle, two variables that control the launch angle
(verticality and heading), three variables that define the autopilot performance, and one
variable to set the effective navigation ratio or gain.  Figure 3 shows the external geometry
variables, with the exception that the nozzle exit radius is actually determined from the
expansion ratio (Ae/A

*), which is one of the solid rocket motor design variables.  Though the
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nozzle is shown, it is merely for visualization purposes.  The nozzle actually resides within
the total length of the missile.  The nozzle exit radius is not, however, free from external
aerodynamic considerations since there is a substantial drag penalty that can be incurred if
the nozzle exit radius exceeds the body radius.  Hopefully, the genetic algorithm will learn to
design the rocket motor and external shape cooperatively so that good thrust levels are
obtained without incurring a drag penalty.  Basically then all outer body dimensions are
controlled by the genetic algorithm, from the nose length to the nozzle exit radius.  Figure 4
and Figure 5 show the nine solid rocket motor design variables that are also part of the
design process, with (Ae/A

*) being one of those variables.
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Figure 3.  External Shape Design Variables
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Figure 4.  Solid Rocket Motor Grain Design Variables
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Figure 5.  Solid Rocket Motor Grain Length, Throat Diameter, and Expansion Ratio

Table 1 formally defines each design variable and Table 2 shows the minimum, maximum,
and resolution that is desired for each variable.  The maximum, minimum, and resolution
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dictate the size of the optimization space.  In genetic algorithm terms, the number of genes in
each chromosome is defined as:
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The genetic algorithm requires parameter bounds and resolutions only and, from this table, it
is obvious that a very broad range of designs is possible.  In fact, the specified bounds and
resolutions means that 2175 possible designs exist.  The size of this problem is tremendous,
especially when the number of atoms in the universe is estimated at 2266.

Table 1.  Design Variables for Guided Systems

Variable Name Definition (units)

Rbi Grain outer radius, also the rocket motor case inner radius (inches)
Rp Outer star radius (inches)
Ri Inner star radius (inches)
xgl Grain Length (inches)
Nst Number of star points
fr Fillet radius (inches)

ε Angular fraction (rad)

D* Diameter of the throat (inches)
Rexp Nozzle expansion ratio (area of throat/area of exit)
Nose 1 – Ogive, 2 – Cone
Lnose Nose Length (inches)
Ltot Total Body Length excluding nozzle (inches)

Rbody Body radius (inches)
bw Exposed semi-span of wing (inches)
Crw Wing Root chord (inches)

λtew Wing Trailing Edge Sweep Angle (deg)

TRw Wing Taper ratio (Ct/Cr)
Xlew Distance from nose tip to wing leading edge (inches)
bt Exposed semi-span of tail (inches)
Crt Tail Root chord (inches)

λtet Tail Trailing Edge Sweep Angle (deg)

TRt Tail Taper ratio (Ct/Cr)
Xlet Distance from nose tip to tail leading edge (inches)

θ Euler Vertical Launch Angle (θ=90 would be vertical (deg))

Ψ Euler Launch Heading Angle (Ψ=90 would be East (deg), 0
would be North)

ζ Damping Ratio

τ Time Constant

ωcr Crossover Frequency

N' Effective Navigation Ratio or Gain



13-11

Table 2.  Maximum, Minimum, and Resolution of Variables for Guided Systems

Parameter Minimum Maximum Resolution Number of Genes

Rbi 2.0 10.0 0.02 9
Rp 0.2 9.9 0.02 9
Ri 0.1 9.5 0.02 9
xgl 50.0 200.0 1.0 8
Nst 3 10 1 3
fr 0.05 1.0 0.01 7

ε 0.25 1.0 0.01 7

D* 0.1 9.0 0.01 10
Rexp 1.0 20.0 0.2 7
Nose 0 1 1 1
Lnose 20.0 90.0 5.0 4
Ltot 50.0 450.0 10.0 6

Rbody 3.0 20.0 1.0 5
bw 0.0 80.0 1.0 7
Crw 0.0 80.0 1.0 7
TRw 0.0 1.0 0.1 4

λtew 0.0 44.0 2.0 5

Xlew 20.0 200.0 5.0 6
bt 0.0 80.0 1.0 7
Crt 0.0 80.0 1.0 7
TRt 0.0 1.0 0.1 4

λtet 0.0 44.0 1.0 5

Xlet 200.0 400.0 5.0 6

θ 5.0 90.0 1.0 7

ψ 0.0 180.0 1.0 8

ζ 0.2 1.0 0.05 4

τ 0.1 0.9 0.1 3

ωcr 10.0 100.0 5.0 5

N' 2.0 5.0 0.1 5

Mode of Operation of Genetic Algorithm
The controls for the genetic algorithm used in this study were fairly common.  The number
of population members was limited to 150 because of computer run time considerations.
Generally, the more population members the better, but when running a 6-DOF thousands of
times it was necessary to limit the population size to less than the number of genes.
Historically, pareto GA’s have been run with more population members than genes to help
maintain good diversity in the presence of competing goals.
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The following table lists all the genetic algorithm operating modes/parameters that were
used for this study.

Table 3.  Genetic Algorithm Controls for Guided Missile Cases

Mode/Variable Value

Number of Goals 2

Steady State Algorithm False

Elitist True

Creep Mutation True

Remove Duplicates True

Number of Members of the Population 150

Crossover Rate 90%

Mutation Rate 0.2%

Creep Rate 2%

Selection Process Tournament

Crossover Single Point

Design Conflict Checking
Some obvious geometrical checks were used to keep the genetic algorithm from expending
computational resources on designs that were not practical.  Seven separate checks were
made as follows:

1. Outer rocket motor case radius cannot exceed body radius

2. Rocket motor grain length cannot exceed body length

3. Tail control surfaces cannot be coincident with, or in front of, wing

4. Tail control surfaces cannot overhand the aft end of the missile

5. Wing cannot overhand nose portion

6. Based on the specified payload and electronic weights and densities, as well as the
rocket motor size, the total volume of the missile must be able to house these
components

7. Tail control surfaces must be located such that the actuator hinge line (assumed to be at
the 50% location of the tail root chord) can be placed at, or very near, the rocket motor
throat.  Since the actuators take up a considerable volume, it is logical that they would be
placed near the throat of the nozzle.

If any of these conflicts occur, the genetic algorithm sends back extremely poor performance
values in each goal area, so that it will learn not to try these designs in the future.
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Thermal and Structural Considerations
The 6-DOF software calculates stagnation temperature at each time step based on Mach
number and altitude (standard atmosphere is assumed).  If the stagnation temperature ever
exceeds 2500 degrees Rankine, then the system is assumed to fail because of thermal loads.

The structural considerations are manifested in the strength of the wings and tails since these
are obvious weak points.  Wing and tail loads during flight are used to calculate root bending
moments and bending stresses.  If the bending stresses ever exceed 185,000 psi (typical for
stainless steel), the wing or tail surfaces fail and the flight is terminated at that point.  The
wing joints are assumed to be rigidly connected to the missile body along the entire root
chord.  Each actuator-controlled tail surface is assumed to be mounted on a 1.25-inch
diameter stainless steel rod.  The genetic algorithm must learn to design systems that will not
fail either thermally or structurally.

The Target
The two targets specified for this research are vastly different.  The first is a fast point-mass
ground-attack re-entry vehicle like a SCUD missile.  The second is a highly maneuverable
air-to-air target capable of random 5-15G’s maneuvers every 0.1 seconds.  The target
subroutine defines initial positions, velocities, and accelerations for the target and performs
simple Euler integration on the equations of motion to update the target's position and
velocity in time.  For the random maneuvering target scenario, each missile design was
flown against 10 different random targets and the miss distances and intercept times were
averaged.

Launch Conditions
The launch velocity (for the assumed launch aircraft) was specified to be 700 ft/sec at 5000
feet altitude.  An ideal launch was assumed so there were no initial angular rates imparted to
the missile.  The launch aircraft heading and pitch attitude were variables to allow the
genetic algorithm find the best way to design, as well as launch, the missile.

Goals for Guided Interceptor
The goals against both targets were to minimize both miss distance and intercept time.
Given the pareto genetic algorithm, to win the tournament selection process, a competing
solution must be better than a competitor in both goal areas simultaneously.

Results:  Ground Launched Interceptor
With the design problem and parameters completely defined, the pareto genetic algorithm
was executed until satisfactory missile performance was obtained.  Figure 6 shows the
convergence history for each goal.  As this figure shows, it took the genetic algorithm 12
generations (1800 attempts) before it found a design that was capable of even lifting off the
ground.  Designs that could not produce thrust were given a miss distance error of 1E+5 so
that the genetic algorithm would learn that these were very bad designs.  Once the genetic
algorithm learned how to produce thrust, the miss distance fell to 298,000 feet at generation
12.  This large miss distance was due to tail fin failure just after lift-off.  Luckily, within two
more generations (generation 14), the genetic algorithm found a design that would not fail
structurally or thermally.  This design flew to within 30 feet of the target.  Such a large
change in performance is rather unusual and highlights what can happen if the right
crossover or mutation occurs at the right place and at the right time.  This is not to say that
the best design of generation 12 actually produced the design at generation 14, but that the



13-14

surviving genes from generation 12 combined with other survivors and produced a 2nd

generation descendant with substantially improved performance.  These two designs are
substantially different (see Figure 7).  The generation 12 design had a radius of 8.5 inches
and a takeoff weight of over 2500 pounds.  The generation 14 design had a radius of 6.3
inches and a takeoff weight of 1700 pounds.  The design at generation 14 had much smaller
tail surfaces, so these surfaces were able to maintain their structural integrity.  The
generation 12 tail surfaces failed within 1/2 second of autopilot initiation.
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Figure 6.  Convergence History for Guided Interceptor Goals

Generation 12 Design Producing 298,000 foot Miss Distance
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Figure 7.  Design Changes from Generation 12 to Generation 14
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The minimum miss distance continued to improve from generation 14 to generation 28,
falling to within 0.16 feet.  Given the time step that was used for the last one-second of the
engagement, the minimum miss distance could only be 0.1 feet at best.  So, it is fair to say
that the accuracy of the system was near a maximum by generation 28.  Prior to the last one-
second of flight, the time step was such that the system accuracy could be no better than
approximately 5 feet.  A larger time step saves considerable computer run time and, for
preliminary design efforts, saving computer time is important.  No further improvement in
the minimum miss distance was seen between generation 28 and generation 50.

Though difficult to see in Figure 6 because of the scale, the minimum intercept time fell
from 41.6 seconds to 38.5 seconds between generations 14 and 50, and the takeoff weight
fell from over 2500 pounds to less than 700 pounds.  The convergence figure does not imply
that the 700 pound rockets actually hit the targets, nor does it imply that the designs that
pulled less than 0.2 G's hit the target.  Rather, this figure merely shows that, within the 150
members of each population, the lightest rocket capable of lift-off weighed less than 700
pounds and at least one rocket never pulled more than 0.2 G's during its flight.  Analysis of
these particular systems showed that the light rockets did not fly very far and that the low-G
rockets barely lifted off.

Since there were multiple goals involved in the design process, it is appropriate to examine
the history of each goal area through the generations.  Figure 8 shows miss distance and
intercept time for several generations.  It is clear that more and more members of the
population maneuver closer and closer to the target as the generations progress.  In
generation 14, 36 members of the population (36 out of 150) had a miss distance within 100
feet.  By generation 50, 124 members of the population reached within 50 feet of the target.
By inspection it is also clear from this figure that intercept time falls appreciably between
generations 30 and 50, even though the two populations have similar miss distance
distributions.  Of solutions with a 5-foot miss distance, intercept times varied between 38.8
seconds and 42.3 seconds.
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Figure 8.  Miss Distance and Intercept Time:  Generations 14, 20, 30, and 50

Figure 9 shows the prevalent time constants and damping ratios that dominated generation
50.  There are clearly not 150 individual points (representing members of the population) on
this figure because, by generation 50, many members of the population were using exactly
the same damping ratios and time constants.  High system damping is obviously preferred.
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This result should be expected since overshooting acceleration commands is not a desirable
missile flight characteristic because it wastes energy.  The preferred time constants were in
the 0.5 to 0.6 second range, which is very reasonable since the target is not conducting
evasive maneuvers to escape the interceptor.  Missiles that are designed to intercept high-G
(9-G's is typical) maneuvering targets have time constants near 0.2 to 0.3 seconds so that
they can quickly respond to target evasive tactics.
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Figure 9.  Generation 50 Time Constants and Damping Ratios

Figure 10 shows the proportional navigation gains and crossover frequencies that dominated
the population at generation 50.  Fairly high navigation gains (4.7-5.0) dominated the
population, which means that system quickly tried to minimize heading errors.  Low values
of the navigation gain, in the 2.0 to 3.5 range, would tend to delay the correction of heading
errors.  For high altitude intercept missions, it makes sense to take out heading errors early in
the flight, rather than waiting until the altitude is such that system responsiveness suffers
from the lack of air density (i.e. dynamic pressure).  The dominant crossover frequencies
were between 20 and 30 rad/sec.  This result is not too surprising since the highest value that
could safely be used1 was roughly 41.66 rad/sec, which corresponds to 1/3 of the bandwidth
of the actuator used in this study.
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Figure 10.  Generation 50 Proportional Navigation Gains and Crossover Frequencies

Although neither the launch angles nor the autopilot performance parameters show great
variation among the members of the population, the actual missile designs produced during
the solution process are quite diverse.  Figure 11 through Figure 14 show the diversity that
exists in a population.  The first generation 30 design that is shown happens to be the design
that intercepted the target substantially faster that it’s contemporaries (recall Figure 8).  This
nine-pointed star design has fairly small wings and the tail control surfaces are well ahead of
the aft end of the rocket.  The nose is also fairly blunt.  This missile is, however, able to fly
to within four feet of the target more quickly than the others.  The time constant, damping
ratio, and crossover frequency for this design was 0.69 seconds, 0.85, and 21.6 rad/sec,
respectively.  Certainly such a long time constant could help explain some of the miss
distance.  Smaller time constants help make the system more responsive.  The navigation
gain was 4.52, which will tend to make the system minimize heading errors as early in the
flight as possible when there is sufficient dynamic pressure to make steering easier.   The
designs shown in Figure 11 include forward and aft wing placements, low and high wing
taper ratios, swept and unswept wing/tail trailing edges, and cone and ogival noses that have
both high and low fineness ratios.  The solid rocket motors themselves are fairly consistent,
having a large initial burning area (9 and 10 point star grains) and large combustion chamber
volumes.
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Generation 30
Miss Distance: 3.9 ft
Intercept Time: 38.8 sec
Takeoff Weight: 1729 lbf
G-Load: 44.6G’s
Length: 367.4 inches
Radius: 8.5 inches

Expanded
Grain View

Generation 30
Miss Distance: 3.2 ft
Intercept Time: 41.0 sec
Takeoff Weight: 1706 lbf
G-Load: 43.7G’s
Length: 354.7 inches
Radius: 9.6 inches

Expanded
Grain View

Generation 40
Miss Distance: 3.2 ft
Intercept Time: 40.9 sec
Takeoff Weight: 1599 lbf
G-Load: 47.4G’s
Length: 354.7 inches
Radius: 9.6 inches

Expanded
Grain View

Figure 11.  Sample Designs from Generations 30 and 40

The designs shown in Figure 12, Figure 13, and Figure 14 all come from generation 50, the
final generation, and are segmented into designs that have miss distances less than 3 feet, 2
feet, and 1 foot respectively.  Not all the designs that meet these accuracy criteria are shown.
These particular designs are merely representative of some of the more accurate designs in
the population.  By generation 50, the genetic algorithm has found two basic classes of
external designs that work fairly well:  highly tapered, small semi-span, forward-placed
wings and moderately tapered, moderate semi-span, aft-placed wings.  The genetic algorithm
found that large semi-span designs produce large bending moments (which tend to cause
structural failure), so wing areas were held at reasonable levels by increasing the root chord.
The tail surfaces are fairly similar, though the placement of the surfaces varies slightly as
does tail size.  The placement of the control surfaces dictates where the throat of the rocket
motor is placed (to make room for the actuators within the missile body), so the length of the
nozzle expansion region varies.  In no case, however, did the actual exit area exceed the
diameter of the missile body.  Designs yielding nozzle exit radii exceeding the radius of the
missile body would produce excess drag, and the genetic algorithm learned to avoid these
types of designs.  There is a chance, therefore, that the rocket motor exhaust pressure would
not match local ambient conditions very well during the boost phase of the interceptor, and
this question will be examined in more detail later.  First though, the rocket motor grain
designs appear to be very similar, but Figure 12 shows examples of 8, 9, and 10 pointed star
grains.  A common feature in generation 50 was also present in generation 30 and generation
40, namely large initial burning areas and large combustion chambers.
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Generation 50
Member: 105
Miss Distance: 2.2 ft
Intercept Time: 41.4 sec
Takeoff Weight: 1606 lbf
G-Load: 39.7G’s
Length: 354.7 inches
Radius: 9.6 inches

Expanded
Grain View

Generation 50
Member: 134
Miss Distance: 2.1 ft
Intercept Time: 41.9 sec
Takeoff Weight: 1608 lbf
G-Load: 42.7G’s
Length: 348.4 inches
Radius: 10.1 inches

Expanded
Grain View

Generation 50
Member: 88
Miss Distance: 2.1 ft
Intercept Time: 40.5 sec
Takeoff Weight: 1613 lbf
G-Load: 40.8G’s
Length: 354.7 inches
Radius: 9.0 inches

Expanded
Grain View

Figure 12.  Three Generation 50 Designs with Miss Distances Less Than Three Feet

Nose shapes also continue to vary between ogive's and cone's, although it appears that the
ogive nose exists in the more accurate examples.  Physical sizes and takeoff weights of the
interceptors are very similar, as are intercept times and maximum G-loads.  The three best
designs (in terms of miss distance only) all had 9-pointed star grains, but the wing sizes and
locations still vary significantly.  It is also interesting to note that these designs all had nose
shapes that were fairly blunt compared to the other designs that were slightly less accurate.
These nose shapes were not blunt enough to incur a drag coefficient penalty larger than
0.012 based on a Sears-Haack body, so an examination of the aerodynamic data for these
shapes revealed that the net effect of the change in the nose length was to move the center of
pressure farther forward very slightly (an average of approximately 1.5 inches) over all flight
conditions.  This center of pressure movement helped reduce the static margin at rocket
motor burnout, thereby increasing maneuverability at the coast condition without seriously
impacting maneuverability during rocket motor burn.
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Generation 50
Member: 56
Miss Distance: 1.8 ft
Intercept Time: 40.4 sec
Takeoff Weight: 1665 lbf
G-Load: 39.7G’s
Length: 354.7 inches
Radius: 9.0 inches

Expanded
Grain View

Generation 50
Member: 71
Miss Distance: 1.7 ft
Intercept Time: 40.7 sec
Takeoff Weight: 1614 lbf
G-Load: 44.4G’s
Length: 354.7 inches
Radius: 9.6 inches

Expanded
Grain View

Generation 50
Member:94
Miss Distance: 1.3 ft
Intercept Time: 41.9 sec
Takeoff Weight: 1619 lbf
G-Load: 38.9G’s
Length: 348.4 inches
Radius: 10.1 inches

Expanded
Grain View

Figure 13. Three Generation 50 Designs with Miss Distances Less Than Two Feet

Generation 50
Member: 132
Miss Distance: 0.8 ft
Intercept Time: 40.5 sec
Takeoff Weight: 1667 lbf
G-Load: 39.5G’s
Length: 348.4 inches
Radius: 9.0 inches

Expanded
Grain View

Generation 50
Member: 36
Miss Distance: 0.6 ft
Intercept Time: 40.6 sec
Takeoff Weight: 1655 lbf
G-Load: 39.8G’s
Length: 348.4 inches
Radius: 9.0 inches

Expanded
Grain View

Generation 50
Member: 1
Miss Distance: 0.16 ft
Intercept Time: 41.7 sec
Takeoff Weight: 1602 lbf
G-Load: 39.5G’s
Length: 354.7 inches
Radius: 9.6 inches

Expanded
Grain View

Figure 14.  Three Generation 50 Designs with Miss Distances Less Than One Foot

It is obvious from Figure 15 why the interceptor is able to build up Mach 4 speeds so fast.
The initial take-off thrust is nearly 64,000 lbf and, as the sharp star points burn off, the thrust
reduces to approximately 37,000 lbf before increasing again as the burning area begins to



13-21

increase during the final burning phase.  The chamber pressure is nearly 2,000 psi initially,
which is well within the 3,000 psi limit of the rocket motor case.  Higher chamber pressures
may be more efficient in terms of utilizing the case weight that is present (less rocket case
steel could have been used had thickness been a design variable), but given the fact that the
missile nearly reaches the thermal limit, this may be a case where not violating the thermal
barrier was more important than a few extra pounds of weight.

0

1 0 0 0 0

2 0 0 0 0

3 0 0 0 0

4 0 0 0 0

5 0 0 0 0

6 0 0 0 0

7 0 0 0 0

8 0 0 0 0

0 2 4 6 8 1 0

T im e  (se c )

T
hr

us
t (

lb
f)

0

2 5 0

5 0 0

7 5 0

1 0 0 0

1 2 5 0

1 5 0 0

1 7 5 0

2 0 0 0

C
ha

m
be

r 
P

re
ss

ur
e 

(p
si

)

T h ru s t

C h a m b e r P re ssu re

Figure 15.  Thrust and Chamber Pressure History

One clear measure of thrust efficiency, however, is the ratio of the nozzle exit pressure to the
local ambient pressure (Pe/Pa).  A ratio of 1.0 is the most efficient, and Figure 16 shows that
the genetic algorithm did a good job of compromising the exit pressure ratio to be both
above and below the ideal ratio during the burn.  Since a variable nozzle exit area was not
possible with this system, the ideal ratio cannot be maintained.  It is remarkable, however,
that the genetic algorithm was able to design the rocket motor throat/exit expansion ratio so
that a reasonable pressure ratio was obtained while keeping the nozzle exit radius within the
body case radius to avoid a drag penalty.  The ability of the genetic algorithm to
simultaneously work on multiple goals while under multiple constraints/penalties makes it a
robust "hands-off" design tool. The fact that the genetic algorithm also seems to yield good
results for implicit (not-stated) performance goals, such as maintaining a nozzle exit pressure
ratio near 1.0, also highlights the value of the technique.
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Figure 16.  Exit Pressure Ratio History

Results:  Air-to-Air Interceptor
Figure 17 shows the convergence history of the best performer in the two goal areas.  There
was a major performance improvement at generation 108, and continued learning until
generation 150.  Recall that each potential design was flown against 10 separate random
targets, so it should be expected that there would be some noise in the miss distance goal
even though elitism was chosen.
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Figure 17.  Convergence History of Best Performer in the Two Goals
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Figure 18 shows population diversity in the two goals at several generations.  There is very
clear performance improvement in both goals from generation 120 to generation 150.  More
and more of the population members began to take on the successful characteristics of their
ancestors, and, therefore, the number of competitive solutions began to increase.  This is
most obvious when looking at the sheer number of solutions that are competitive in
generation 150 versus generation 120.
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Figure 18.  Intercept Time and Miss Distance Diversity

Some of the more competitive missile designs from generation 200 are shown in Figure 19.
The most obvious feature of these designs is the large wing/tail surfaces.  For high
maneuverability, large surfaces are needed since thrust vectoring is not currently part of the
design process.  Wing placement is also very far forward in order to enhance turning ability.
As the rocket motor burns the center of gravity of the missile moves forward, so a forward
wing placement helps offset some of the inherent stability due to center of gravity motion.  It
is interesting to note that a circular cross section was preferred for the solid grain, meaning a
progressive thrust profile.  One reason for choosing a progressive thrust profile could be that,
since the launch point was at 5,000 feet (altitude) and the target was at 20,000 feet, it might
be beneficial from a thermal viewpoint to delay achieving maximum Mach number until
reaching an altitude with a lower static temperature.
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Member 2
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Shape: 
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Peak Thrust: 13,000 lbf
Burnout: 7.3 sec

Figure 19.  Various Missile Designs from Generation 200

Figure 20 shows the Mach number and temperature profile for one of the flights for the first
missile (member 2) shown above.  As you can see, the genetic algorithm was pushing the
thermal limit in order to minimize the intercept time, so having a progressive thrust profile
probably helped keep the missile from exceeding the thermal limits.  Prior to burnout, the
missile had climbed to approximately 10,000 feet and had a Mach number near 4.5.  Had the
missile been at 5,000 feet at Mach 4.5, it would have exceeded the thermal limit of 2500
degrees Rankine by over 25 degrees.
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Figure 20.  Mach Number and Total Temperature Profile for a Rapid Intercept Case
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These acceleration histories were achieved with the types of damping ratios, time constants,
navigation gains, and crossover frequencies shown in Figure 21 and Figure 22.  The time
constants concentrated around 0.37-0.47 seconds.  Recall that there are 100 actual points on
these figures, though it appears that there are less because many points are the same.  In fact,
of the 100 solutions at generation 150, over 80 of them used a time constant between 0.37
and  0.42 seconds.  The favorite damping range was from 0.63 to 0.88, with a fairly even
distribution of solutions in this range.  This is moderate damping.

The Navigation gains are fairly conventional for air-to-air interceptors (4.5-4.9), but many of
the specified crossover frequencies are very high.  There is a cluster of solutions within the
conventional air-to-air missile range, between 47-54 rad/sec.  But there is another cluster
between 85 and 94 rad/sec that is close to the actuator natural frequency of 125 rad/sec.
Analyses of these high crossover frequency cases shows that, although they are only
marginally stable at certain flight conditions, they are (on average) just as accurate as the
solutions having lower crossover frequencies.  They do, however, have lower stability
margins and are more prone to excitation at certain airspeeds.  Since there was no goal
established to assess stability per se, it is natural that these types of solutions would survive
since their performance in the two stated goals was comparable to the more stable solutions.
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Figure 21.  Generation 100 Time Constants and Damping Ratios
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Figure 22.  Generation 100 Navigation Gains and Crossover Frequencies

Computer Run Time
The 200 generations presented here required 10 days of CPU time on a Silicon Graphics R-
10000 processor.  The R-10000 is approximately the same speed as a 400 MHz Pentium II
processor.

Conclusions
The pareto genetic algorithm is well suited to designing complete interceptor systems
consisting of propulsion, aerodynamics, and autopilot modules.  This work has shown that
an all-at-once design process, controlled by the proper artificial intelligence tool, is not only
possible, but much faster than iteratively designing each subsystem component into a
workable package.  Simple constraints, such as the thermal limits and structural integrity
calculations used in this work, provide a means of injecting real-world considerations into
the design process.  Even with diverse performance modules and diverse goals, the genetic
algorithm was able to learn how to design around the constraints while achieving good
performance in overall system goals.  In both the difficult high-altitude/high-speed
engagement scenario and the highly maneuverable air-to-air target scenario, the genetic
algorithm developed multiple designs capable of close intercept.

The basic three-loop autopilot is ideal for preliminary design studies.  Improvements such as
thrust compensation could, and should, be included when the design process moves beyond
the preliminary stage.  The analytic determination of gains, and gain schedules based on
Mach number and altitude, have made three-loop autopilots very popular in current missile
systems.  The basic proportional navigation guidance algorithm used here worked well, but it
is likely that performance could be improved by using multiple algorithms during different
phases of flight to correct, for example, the adverse acceleration commands at low launch
speeds.



13-27

References

1 Zarchan, Paul, Tactical and Strategic Missile Guidance, 3rd Edition, Volume 176, American
Institute of Aeronautics and Astronautics, 1997.
2 Nesline, F.W. and Nesline, M.L., "How Autopilot Requirements Constrain the Aerodynamic
Design of Homing Missiles," Conference Volume of 1984 American Control Conference, San
Diego, CA, June 6-8, 1984.
3 Stallard, D.V., "An Approach to Autopilot Design for Homing Interceptor Missiles," AIAA- 91-
2612-CP, AIAA Guidance and Control Conference, 1991.
4 Washington, W. D., “Missile Aerodynamic Design Program,” 1980, 1990.
5 Ashley, H., and Landahl, M., Aerodynamics of Wings and Bodies, Dover Publications Inc., New
York, New York, 1965.
6 Etkin, Bernard. Dynamics of Atmospheric Flight, John Wiley and Sons, 1972.



This page has been deliberately left blank

Page intentionnellement blanche



14-1

Analyzing Rocket Plume Spectral Data
with Neural Networks for Condition Monitoring

Kevin W. Whitaker
Associate Dean for Academic Programs

College of Engineering
The University of Alabama

P.O. Box 870200
Tuscaloosa, Alabama  35487-0154

USA

Abstract
Space Shuttle Main Engine fault detection systems typically rely on sensor data analysis via redundant rule-
based expert systems along with visual observations for the real-time assessment of engine health.  A novel
alternative to the traditional health monitoring approach is predicated upon the acquisition and subsequent
neural network processing of electromagnetic plume emissions.  Spectrometric examination of an emission
spectrum provides a means for the identification and quantification of metallic species indigenous to the main
engine plume flow.  Knowledge of the metallic species eroding could pinpoint the specific location of
component degradation within the engine as well as identify serious component failures at an early stage. Such
an approach is advantageous because it allows for the detection of numerous internal failures that would
otherwise go unnoticed by traditional monitoring methods.  This paper details a radial basis function neural
network architecture that is capable of inferring metallic state from a given plume spectrum.  Specifically, a
comprehensive discussion of the methodologies necessary for the development and implementation of the
neural network approach are provided.  The resulting neural networks are validated with actual test-stand data
from an actual Space Shuttle Main Engine at NASA’s Stennis Space Center.

Nomenclature
y = desired function for neural approximation

x = neural network input feature pattern

gj = Gaussian kernel function

µj = kernel function center position

σj = kernel function spread constant

w = optimal array of network weighting coefficients

G = array of Gaussian kernel responses to input patterns

Ii = vector of spectral intensities, (Watts•cm-2•str-1•nm-1)

Introduction
Current Space Shuttle Main Engine (SSME) operating health assessment procedures employ an expert-rule
based platform with redlining capability.  This approach is very effective at identifying potentially catastrophic
engine failures but it cannot quantify the degree of internal engine component degradation experienced during
an engine’s cycling period.  For example, the degree of erosion of a pre-burner faceplate or nozzle side-wall is
assessed by a costly post-test, or post-flight, visual inspection.  In many instances, SSME inspectors do not
have prior knowledge of what engine components to check and isolate as potentially dangerous for future
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engine operations.  This paper offers an attractive alternative to the traditional health monitoring approach.  It
is a method that will allow for the isolation of SSME problem areas and also provide crucial real-time
information that can be used to assess the internal health of the SSME.  Specifically, radial basis function
neural networks are used to approximate the underlying functional mapping between plume emission spectra
and metallic species content.  The resulting neural platform is capable of providing the metallic concentrations
contained in the SSME plume.

For years, researchers at NASA’s Marshall Space Flight Center (MSFC) have been filming developmental
tests of the Space Shuttle Main Engine.  Subsequent analysis of film that involved major engine failure
incidents revealed a consistent feature common to most of the breakdowns.  In 8 of 27 failure events observed,
a visible discharge of some substance was seen in the plume prior to the engine failure.1-3  These discharges
ranged from extreme flashes to small regional streaks.  The discovery suggested an interesting approach to
SSME health assessment, namely, if it is possible to visually detect anomalous events with the naked eye, then
perhaps it would be possible to discover anomalous events below the “visible threshold” (infrared, ultraviolet,
etc.) that would be indicative of an imminent failure.1,2  This would be tantamount to real-time engine health
monitoring via the quantitative analysis of the SSME exhaust plume spectral data.

The idea of extracting chemical data from the analysis of the electromagnetic (EM) spectrum is not new.
Holding a copper wire in a sufficiently hot flame produces a characteristic green region in the flame.  The
copper atoms are excited to such a high energy state that they emit electromagnetic radiation at several
wavelengths, with green light being dominant.  The atomic structure determines the wavelengths of EM
emitted, and since all elements are unique, no two elements will emit EM at exactly the same wavelengths.
Thus, each element has its own unique spectral signature.  For example, in the same flame, the element nickel
will emit EM at wavelengths different than copper.  A plot of radiant intensity versus wavelength is called the
electromagnetic spectrum and an example of a typical spectrum for nickel is shown in Fig. 1.  Since this
spectrum is unique, a spectrometric detector some distance from the flame would allow a user to determine the
presence of nickel, or any other material for that matter, if its spectrum was known.

Individual spectra for other elements vary in complexity, some having a few atomic transitions (peaks), others
having many.  Three germane points of importance result from considering Fig. 1: 1) Every element has its
own “spectral signature,” 2) The emission will contain atomic transitions at wavelengths which may not be
part of the visible spectrum, and 3) The intensity of the emission is a function of the quantity of emitting
matter present in addition to the system temperature and other quantum variables.

Rocket plumes are emissive events subject to the same physics (with more complications of course) as burning
nickel or copper in an open flame.  The Optical Plume Anomaly Detection (or OPAD) program was initiated
by researchers at MSFC as an effort to take advantage of the wealth of information contained in the exhaust
plume of a rocket engine.  The initial idea was to identify anomalous spectral events which were consistent
with known mechanical failures and then use them as templates in the health monitoring of future engine tests,
ground or in-flight.  These spectral templates could then be coupled with the anomalous events found in the
vibrational and other sensor data to determine the overall state of the engine.1

The Technology Test Bed (TTB) at MSFC and the A1 Test Stand at NASA’s Stennis Space Center (SSC)
were the first to receive an OPAD instrument pack developed by combustion phenomenologists at the U. S.
Air Force Arnold Engineering Development Center (AEDC).  Soon thereafter, the process of building a
cumulative database of the spectral templates began.  Researchers wanted to catalogue the various spectral
forms associated with changes in SSME operation (i.e., changes in oxygen/fuel ratio, engine startup, etc.) so
that a baseline of “expected” spectral signatures would be established.  The “template idea,” however, soon
gave way to even more ambitious goals as a result of some initial findings in the TTB experimental program.1,3

Specifically, health monitoring now involved the simultaneous tasks of anomaly detection and metallic species
quantification (see Fig. 2).  This meant that the free atom densities of all the metals of interest within the
engine would have to be inferred for every spectral scan taken by the instruments.  The quantification process
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would essentially give metal concentration versus time and thereby highlight any anomalous events indicative
of a major failure.

Simply stated, the capability to detect anomalies and quantify metal erosions would be an enormous benefit to
the propulsion engineering community.  It could reduce costly engine servicing by specifying only those times
that it would be needed.  Moreover, it could pinpoint the specific engine component that needs attention
(anomaly isolation).  For example, post-test analysis of OPAD spectral data from one particular TTB firing
revealed the erosion of a metal indigenous to the pre-burner faceplate; indeed, a subsequent analysis of the pre-
burner by the engine group at MSFC found that the faceplate was in serious need of replacement.1  Finally, the
OPAD system could assist in the real-time health monitoring of launch vehicles.  If an engine is operating in
an “off nominal” condition, potentially jeopardizing the success of the mission or safety of the crew, the
OPAD detection system could order an engine shutdown or mission termination.

The cursory overview of the OPAD capabilities given above says nothing of the complexity of the subsystems
necessary to implement it.  Specifically, metal quantification from an electromagnetic spectrum requires a
computational model of the exhaust plume emission physics.  Spectrometer hardware for the test stand, as well
as the in-flight environment, had to be developed for the spectra acquisition.  Lastly, methods for
implementing the spectral model to allow metal determination would need to be integrated as well as
validated.  The central theme of the work presented here, however, will be the development of artificial
intelligent systems that will perform real-time determination of the metallic species concentrations present in
the exhaust plume.  Specific objectives include: 1) Establishing appropriate techniques for feature extraction
from a spectrum, 2)  Identifying robust data transformation methods for accurate neural network performance,
3) Creating a neural architecture capable of quantifying the metallic content of the plume flow, and 4) Creating
a neural platform that can perform the spectral mappings in “real-time.”

Spectral Investigation of Emissions
Any spectrum obtained with the OPAD instrumentation is composed of three components: 1) a dominant OH
component which arises from the burning of dissociated hydrogen radicals, 2) a background noise component
caused by the scattering of background light, and 3) a metallic component, if indeed there is one, which would
be indicative of a metal erosion.  Thus, the quantification of a metal erosion and the subsequent identification
of any anomalies requires a spectral “cleaning” procedure followed by an evaluation of the plume metallic
state.  In other words, methods for removing the OH and background components of the spectrum would need
to be employed so that the underlying metallic component could be seen.  Then the metal quantities would
have to be ascertained from the remaining metallic component in the spectrum.

For a given spectrum, ascertaining the metallic quantity could only be done through two methods: 1) by
comparing the spectrum to past spectra obtained from plume seeding tests, or 2) using a theoretical model that
emulates the emissive nature of the plume.  The first option is plagued by an inability to precisely measure the
erosion and survivability rates of the inserted species.  Thus, there would exist plume spectra to compare to,
but the metallic content associated with the spectra would be in error.  Moreover, it would not be cost effective
to run the SSME through all the possible metallic seeding combinations.  For these reasons, option two was
selected.

Spectral models have been in use since the late 1960’s at AEDC.  Most of these models measured flow-field
species concentrations using techniques such as emission resonance absorption, electron beam impact
excitation, and most recently, Laser Induced Fluorescence (LIF).  There are many excellent validated radiative
transfer codes available for specific molecular species, but none have been developed that can handle the
comprehensive analysis of atomic spectral data.  To meet this need, researchers at Vanderbilt University and
AEDC developed a theoretical plume model known as SPECTRA.4,5  The SPECTRA model can provide
quantitative plume spectral analysis for emission, absorption, and LIF configurations installed at the rocket
nozzle exit plane.  Validation of this code is still ongoing, but carefully controlled SSME plume seedings at the
TTB have shown the model to be consistent.4
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The forward operation of the SPECTRA code involves the calculation of a theoretical plume spectrum from a
pre-defined set of metal concentrations and flow parameters.  The reverse operation of SPECTRA, namely,
obtaining the metallic components which made up the spectrum, cannot be written in a numerically convenient
form because of the insurmountable mathematics involved. This, therefore, mandates that the SPECTRA code
be applied in an iterative manner until it converges with the spectrum obtained from the OPAD
instrumentation.  The set of SPECTRA input parameters which produced this convergence would then specify
the current metallic state of the plume.  Accordingly, higher order numerical fitting routines have been
developed for such a purpose and the resulting spectral fits obtained using these codes are very accurate.6,7

However, the time necessary to process a single spectral scan is on the order of hours while the demands of
real-time OPAD require processing a scan every half second.7  For this reason, neural network techniques have
been investigated which can provide an initial estimate of metal concentrations in the rocket plume.  These
estimates could then be used for evaluative purposes in a real-time environment or as a starting point in post-
test analysis for more accurate fitting routines, thereby significantly reducing the amount of computational
effort.

The OPAD Neural Network Approach
A classic use of neural networks is function approximation.  Specifically, for the OPAD case, the function
would be the inverse of the theoretical SPECTRA model.  Using large amounts of spectral data generated from
SPECTRA, it should be possible to train a neural network to learn this inverse mapping.  Subsequently, when
presented with a spectrometer scan, the neural network could estimate the metallic content of the plume in
real-time.  (Predictions in under 0.5 sec was set as a goal for this study.)

Figure 3 supplies an overview of the multiple neural network architecture developed in this investigation.
Notice that there is one neural network for each metallic species being monitored.  With this setup, the steps in
assessing the SSME internal health are as follows: 1) Acquire a spectrum from the plume emission, 2) Extract
information about the spectral signatures of the individual metallic species being monitored, 3) Give this
information to the appropriate metal neural network for a prediction of the metal’s number density, 4) Monitor
all the metallic erosions in real-time and identify anomalous emissions, and finally 5) From the list of eroding
metals, identify the failing engine component and severity of the erosion.

There can be found numerous types of neural network architectures in the technical literature.  For this
problem, however, the radial basis function neural network (RBFNN) was chosen because of its ability to
approximate highly nonlinear functions (precisely what the inverse of SPECTRA is) very quickly.  The means
by which these RBFNN’s are trained and developed are the topics of the next section.

Radial Basis Function Neural Networks
The RBFNN can estimate a function y(x) after training with a set of representative input/output pairings.  The
pairings in the present case would be sets of spectra and their corresponding metallic states.  From a neural
network point of view, this training data could come from either the SPECTRA code or emissions obtained
during a test-stand firing.

With examples of input/output patterns, the RBFNN can adjust its internal parameters so that it approximates
the functional mapping to within some degree of error.  Qualitatively, the RBFNN does this by forming
localized “bumps” or response regions within the input space.  The superposition of the these local response
regions forms a response surface that spans the space covered by the input training patterns.

By definition, a radial basis function (RBF) is one which decreases (or increases) monotonically away from a
central point thereby giving it an inherent “bump” form. Classic functions that exhibit this propensity are the
Gaussian, Cauchy, and the Inverse Multiquadric.8  As an example, consider the Gaussian function given by
Eq. (1):
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The RBFNN positions a collection of these RBFs throughout the space covered by the input training patterns.
The parameter µj specifies the location of a single RBF within the input space (µj has the same dimension as
the input vector 

�

x ) and the parameter σj determines the width of the local function.  Thus, a given RBF will
be centered at µj  within the input space and have a “receptive field” which is proportional to σj.  Moreover, it
will give a maximum response for input vectors, 

�

x , which are nearest the RBF center, µj.

With a developed approximation surface, the RBFNN estimates an output for an incoming input case by first
evaluating each of the RBFs (in other words, determining where the input vector lies on the approximation
surface) and then forming a weighted linear summation of their responses.  The difficulty arises not from the
logical evaluation of an input but rather the establishment of the network parameters, namely center positions
(µj), RBF widths (σj), and output layer weighting coefficients.

The construction of an RBFNN is accomplished in a two part learning scheme known as hybrid learning (see
Fig. 4).  The initial forward connections of the network contain the RBF centers, µj, obtained through
unsupervised assimilation, followed by an output layer of weighting parameters, wj, formed through supervised
instruction.  Training in the unsupervised mode is done without a pre-defined learning goal; input
categorization and learning must be done using correlations within the input training data in contrast to
feedback from a teacher or critic.  For the RBFNN, the learning scheme essentially clusters the inputs and
specifies where to position the RBF centers so that the desired response coverage is obtained.  Thus, via
unsupervised learning, the RBF center positions (the µj) are chosen a priori and remain fixed throughout the
output layer training.  Methods for determining these positions as well as the RBF widths have been previously
investigated.9  The rearward connections, composing the output layer of the network in Fig. 4, specify the
weighting (or regression) coefficients which are trained in a supervised fashion.  Supervised means that
learning is based on comparison of the network output with the known “correct” answers.

For an RBFNN with a single layer of Gaussians, given that the RBF centers (µj) are fixed, the optimal weight
array for the output connections which gives the best functional mapping can be found using the least squares
normal equation developed in multiple linear regression theory.  Details of this procedure can be found in Ref.
8; the results are simply stated here.  For a set of training input vectors, 

�

x , with corresponding RBF centers µ,
there will be an array of Gaussian neuron responses, G.  Given this, the optimal weight array can be stated as:

w = [GTG]-1GTy (2)

With the weights, centers, and widths set, the fundamental mapping can then be written as:

( ) ( )xgwxf i

m

i i

��

∑ =
≈

1
(3)

Thus, for an input vector 
�

x , the solution f(
�

x ) is a weighted linear summation of each RBF’s response to 
�

x .
RBFs that are within the region of 

�

x  will give the largest responses, whereas those farthest away will give
negligible contributions to the series solution.  Moreover, the RBF neuron responses, g xi

�

b g  will be bounded

between 0 and 1 with the assigned weights (wi) specifying the neurons heights.

A quick glance at Eq. (3) reveals that the RBFNN  is a weighted summation of basis functions that are “tuned”
using the training data.  This is a technique which is frequently used in asymptotics and series representations
of functions.10
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Extracting Features From the Plume Spectrum
The overall goal here is to quantify, in real-time, the amount of metal erosion as well as the plume combustion
temperature.  The only available information given to the RBFNN is a spectral plot procured from the OPAD
instrumentation.  Given this, what should the neural network inputs be?  In other words, what features within
the data supply the most information about the state of a particular metal?  The answer to such a question is
one of the fundamental discriminants that ultimately determines the success of this neural network application.

Developing neural network inputs most often requires the researcher’s in-depth knowledge of both the systems
involved and the underlying physical phenomena occurring.  There are times, however, when a bad choice of
input can lead to a new form of insight into the detailed processes of the physical problem.  For example, some
inputs may not be as sensitive to changes in the output as was once thought, thereby forcing an inquiry as to
why and ultimately leading to some form of insight.  This has certainly happened throughout the years of the
OPAD neural network development.9

Choosing network inputs starts with a firm understanding of all the possible error sources contained within the
data.  For the OPAD system, the effects of the background light and OH continuum on the observed emission
are two such examples.  Additional errors could also be caused by spectral interference; that is, some metals
may emit at nearly identical wavelengths causing interference in the actual intensities obtained at those
wavelengths.  It is important to note that these are external error sources and they do not include the internal
errors incurred from the failure of the linear regression model to fit all the RBFNN training points.  The proper
choice of an input structure can never eliminate the external errors, but it can help alleviate their effects on the
RBFNN performance.

With the foregoing thoughts in mind, a study was initiated to find input data transformations that would assist
in countering the effects of errors associated with the instrumentation and external radiation.  Consider a
typical OPAD spectrum shown in Fig. 5.  The training of a neural network to predict properties of element “A”
is desired.  Assume that all the peaks (and regions) of element “A” that are not overshadowed or significantly
affected by other elements and OH emissions have been located.  Further suppose that a total of 200 sampling
points which comprise these regions can be extracted and formed into vectors (like 

�

Ic  for example).  Based on
the foregoing discussions, three things need to be accomplished: 1) use the smallest number of inputs to reduce
computational cost, 2) apply a transformation to the inputs that will reduce sensitivity to errors, and 3) scale
the data so that it has relatively the same variance.

Step 1 is accomplished by selecting a few emission regions for a metal which are most responsive to changes
in concentration, temperature, etc., and relatively non-interfered with by other metals or the OH continuum.
Traditionally, step 3 is handled with a logarithmic transformation and this has been found to be sufficient for
the analysis here as well.  For step 2, three transformation methods were selected for use in pilot studies.
These transformations are given in Table 1.  The appropriateness, and ultimate selection for use, of the three
transformation methods was determined by a detailed empirical study.9,11  The study isolated a metal and
trained three RBFNNs to analyze the metal’s spectrum.  Each of the three networks trained used a different
data transformation.  The results found that the subinterval energy method gave the best performing network in
light of all the external error sources.

Results and Discussion
The first step in the development of a RBFNN involves the creation of n-sets of input/output pairings.  To do
this, the three parameters for a chosen metal are randomly varied over specified ranges within the SPECTRA
code and the resulting spectra are stored.  The parameter ranges were set by combustion phenomenologists as
the most likely to be observed during a firing of the SSME.5  Table 2 details these parameters and their typical
ranges appropriate for the SSME.
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Transformation Method Operator

Area Input ( ) λdI n∫
�

Maximum Intensity ( )nI
�

max

Subinterval Energy Method nI
�

Table 1 Possible transformations for a given input vector.

Flow Field Parameter Range

Mach Disc Temperature [K] 2500 - 3200

Number Density 1.0E09 - 5.0E14

Broadening Parameter 0.0 - 1.2

Table 2 SPECTRA flow field parameter ranges.

Keeping track of these combinations and the associated spectra produced provides the RBFNN with the
necessary sequence of input/output pairings.  The number of training sets to generate varies depending on the
specific application.  For the OPAD project, RBFNNs were trained with 200, 400, and 800 training sets.
During training, it was observed that significant increases (on the order of hours) in training time and network
complexity accompanied the use of large training sets.  The problem was further augmented by the SPECTRA
costs incurred: the creation and storage of training data.  The constraints of the OPAD project demand real-
time, low computational cost software that can be developed in a short time.  Furthermore, adding additional
training sets (such as the 600 and 800 runs) did not increase the accuracy of the predictions.  For these reasons,
only moderately large (on the order of 200) training sets were used in the development of RBFNNs.  If these
are uniformly generated across the parameter ranges, then enough information is provided to allow the
RBFNNs to interpolate.

Once the RBFNNs are trained for the respective metals, the question then becomes, how good are the networks
at accomplishing the task of predicting the number density, broadening parameter, and temperature of a
particular metal from a given test-stand spectrum?  Additional sets of test data can be created with the
SPECTRA code and used to validate the RBFNNs.  The data is easily obtained and can be quite useful for
discovering trends and testing new ideas.  As a validation agent, however, it does not provide a definitive
statement as to the performance of a network within the “real world.”  To accomplish this, the SPECTRA code
would require a complete modeling of the absorption phenomena, the OH continuum, variable wavelength
dispersion effects and many other unforeseen physical influences.  To use actual test-stand data for validation,
however, would require knowledge of what is in the flow, (something that is unknown), so that comparisons
can be made with the network’s predictions.  However, test-stand data can provide validation by other means
as will be seen.
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In January of 1996, the engine group at SSC was testing the new Pratt and Whitney SSME turbo-pump when
an observer noticed a visible object being ejected from the engine accompanied by numerous significant
emissive events.  Immediate shutdown was ordered to preclude a possible engine failure.  Post-test analysis
found that the turbo-pump had failed.  Further analysis of all the video tape footage, vibrational data, and other
instrumentation identified five specific moments during the test where major anomalous events had occurred.
Had these anomalies been detected ahead of time, the engine could have been shutdown and the destroyed
engine components salvaged.

With this information, OPAD researchers at MSFC attempted to identify the same anomalies within the
spectral data.  Using the SPECTRA code, the researchers iteratively fit many of the spectral scans obtained
from the SSC test stand and found major anomalous events in the spectra at precisely the same points in time
as indicated by the other data sources.7  It took the SPECTRA fitting routines two hours to fit a single spectral
scan taken in time.  There were over a thousand scans for the 500 second SSME test, thereby making the job
extremely arduous.

As a validation of the RBFNNs, seven metals were selected by analysts at MSFC as the most important to
monitor in terms of engine component makeup and erosive materials.  They are chromium, aluminum, nickel,
manganese, silver, cobalt, and iron.  All the scans taken during the SSME failure at SSC were then given to
RBFNNs trained to monitor the selected metals.  It took the RBFNNs less than two minutes on a Silicon
Graphics Indigo to make predictions on a thousand scans for the seven metals.  The improvement of
computational time was significant in comparison to the two hours required for the iterative fitting of a single
scan using the SPECTRA routines.

Figure 6 gives the RBFNN predicted number density trace for each metal.  For comparison, the major
anomalous events found by the engine group test groups at MSFC and the Stennis Space Center via the
alternate data sources (primarily vibrational and visual data) occurred at the test times given in Table 3.  Figure
6 demonstrates that at every one of the points listed in Table 3, the RBFNN discovered an anomalous erosive
event.  (These events are annotated on Fig. 6).  The 531 sec event marked the total failure of the SSME turbo-
pump and the metallic emissions where much higher than those found in Fig. 6.  Therefore, the plots were
truncated prior to 531 seconds so the anomalies leading up to the failure could be viewed.

Event 1 Event 2 Event 3 Event 4 Turbo-pump
Failure

130-131 [sec] 276 [sec] 283 [sec] 404-405 [sec] 531-554 [sec]

Table 3 Test times where the most erosive anomalous events occurred for the
January 1996 test of an SSME at the Stennis Space Center.

The predictions of the RBFNNs duplicated previous conclusions drawn from all the other data sources and this
was accomplished in under two minutes.  Recall that SSME health monitoring via plume spectral assessment
is predicated upon the following tripartite evaluation scheme: anomaly identification, quantification, and
isolation.  The results illustrated by Fig. 6 explicitly validate the neural network architecture developed herein
as a real-time anomaly identifier.

The question of the RBFNN’s ability to quantify the amount of metal in the spectrum will be addressed
momentarily.  As for anomaly isolation, such as identifying a failed component, this task would not be one for
the RBFNN alone.  Isolation requires the simultaneous use of the network predicted quantities and knowledge
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of the distribution of the various metals in the components throughout the SSME.  To date, a database such as
this has yet to be established.

In an attempt to validate the anomaly quantification ability of the RBFNNs, a formal investigation was
undertaken.  There are three main sources of error in the RBFNN estimations: 1) Uncertainties in the
calibration of the spectrometers,  2) Uncertainties caused by the inability of the SPECTRA model to
completely account for all the flow physics, and 3) Uncertainties in the inability of the RBFNN model to
completely approximate the underlying physical function.  The study is ongoing, but the initial results indicate
approximate errors of 2% for the temperature prediction, 8% for the number density prediction, and 35% for
the broadening parameter prediction.12

Further qualitative conclusions can be drawn by examining the spectral “fits” produced by the RBFNN
predictions.  To illustrate this, predictions for the seven metals of interest were taken from the 130 sec and 276
sec spectral events.  There is not a preference of one event time over another; these two were merely selected
to provide a qualitative measure of the results.  Indeed, the results given here are representative of spectral fits
found at other erosion events.  RBFNN predictions were fed back into the SPECTRA code to obtain all the
individual metal contributions to the spectrum.  The resulting spectra were then compared against the original
test-stand data scans and the wavelength regions indigenous to the various metals were isolated.  Typical
results of these actions are shown in Figs. 7-10.  Additional spectral fits can be found in Ref. 9.

Looking at Figs. 7-10, it can be concluded that the RBFNNs are capable of quantifying metallic content in the
plume.  (Note that an “exact fit” would be when the predicted and test-stand data curves are identical.)  The
fits for nickel, iron, and chromium seem to be the best.  Cobalt is nestled in-between a series of nickel peaks,
but with closer examination it can be seen that the RBFNN’s predictions matched very well with most of the
cobalt peaks within the scan.  The nickel prediction was slightly higher than that observed in the test-stand
data; this could probably best be explained by the corruption of the nickel peaks by the neighboring cobalt
lines.

A statement that can be made with certainty here is that the RBFNNs accomplished the anomaly detection
task.  As for the quantification task, initial uncertainty analysis along with many spectral fits, similar to the
foregoing fits, have demonstrated an initial capacity of the RBFNNs to correctly predict metal properties in the
SSME exhaust plume.

Conclusions
SSME health monitoring via plume spectral assessment is predicated upon the following tripartite evaluation
scheme: anomaly identification, quantification, and isolation.  Recognizing anomalies in the plume spectral
scans and determining their severity in real-time situations can be computationally exhaustive.  For this reason,
neural network techniques have been investigated that accomplish these tasks in an expeditious manner.

The SPECTRA plume emulation code determines the specific plume spectral signature for a given metal
composition and flow condition.  The ultimate goal of the RBFNN architecture was to provide the “inverse” of
this SPECTRA operation.  More specifically, it was to discover a functional mapping allowing for the
inference of the plume metallic state for a given spectrum.  Using data sets created by the SPECTRA code,
data mining procedures were incorporated that provided means for the selection of RBFNN inputs that
compressed the computational space while still adequately representing the spectral information.  Trained
RBFNN architectures were then developed using this data.  Results showed that the networks were capable of
quantifying metals contained in the SSME plume.

To validate the RBFNN architecture developed, spectral data taken from the January 1996 SSME failure at
NASA’s Stennis Space Center were used.  The RBFNNs were able to quickly identify anomalous events.
Their ability to quantify has also been verified through uncertainty analyses and spectral fits with the test stand
data.
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Overall, the use of RBFNNs as real-time anomaly identifiers has been substantiated.  They provide quick
detection of anomalous erosions, identify which metals are eroding, and quantify the degree of erosion.  This
information could be used to isolate failing internal components, determine engine life, or obviate an imminent
engine failure on any propulsive platform that contains some type of EM emission.
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1 Abstract
In this paper we highlight four problem domains that are well suited and challenging for
intelligent system technologies. The problems are defined and an outline of a probable
approach is presented. No attempt is made to define the problems as test cases. In other
words, no data or set of equations that a user can code and get results are provided. The
main idea behind this paper is to motivate intelligent system researchers to examine
problems that will elevate intelligent system technologies and applications to a higher
level.

2 Introduction
Intelligent System (IS) applications have gained popularity among aerospace
professionals in the last decade due to the ease with which several of the IS tools can be
implemented. The applications have gained popularity among both the technical and user
communities for both intellectual curiosity and for practical reasons. Some of the novel
ideas using IS include spacecraft autonomy, aircraft control, modeling, airfoil design,
satellite operations, missile design, vehicle health management, and so on. In the next
several sections, we present some problem domains that are challenging to achieve using
intelligent system technologies. If successful, the ensuing IS approaches can
revolutionize many aspects of aerospace applications. In each of the problem domains
discussed, we first present the potential problem area and outline one IS configuration
that could help achieve success. The problem domains covered include:

• Automated design
• Intelligent maneuvering
• Smart agent society
• Real-time optimization

Paper presented at the RTO AVT Course on “Intelligent Systems for Aeronautics”,
held in Rhode-Saint-Genèse, Belgium, 13-17 May 2002, and published in RTO-EN-022.
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3 Automated Design

3.1 The Problem

Aerospace systems of tomorrow will be complex and their design interdisciplinary. For
example, design optimization conducted individually on subsystems such as wing,
propulsion, and automatic control will not integrate without extensive and costly
redesign. A unified design that integrates all facets of a system is difficult if not
impossible to find using current optimization techniques. Traditional design approaches
rely on cut-and-try approaches adopted by designers that can be conducted very well
using high performance computers. The bottleneck for computer implementation is the
lack of (1) a universal representation of the design features and (2) a procedure for the
design features to be cut-and-tried by a computer in an optimal way. There are other
potential problems associated with computer-based automated design. These are:

• Time required for a system simulation is large prohibiting use of full fidelity
simulation of the problem.

• Analytical derivatives of the objectives of design are frequently unavailable and
numerical gradients are expensive to compute.

• Design space consists of both continuous and/or discrete parameters
• Design response surface is non-linear, discontinuous, or undefined in some

regions. Several local extrema is common in many applications.
• Initial guesses for the design are costly and might lead to inaccessible solution

spaces.

The desire here is to use intelligent system technologies in an unified way to arrive a
design framework by which automated design can be achieved using computers.

3.2 A Solution

The idea of letting the computer do the cut-and-try is not new to the world of
optimization. A genetic optimization search basically involves a cut-and-try approach
that is driven by the survival-of-the-fittest concept. If universal representations
(standardized representation) can be developed, then a technique like genetic algorithms
could be used. The other challenge is the speed at which designs could be evaluated. This
implies that modeling techniques such as neural networks, fuzzy systems and so on can
play an important role here.

To obtain a universal representation, we introduce the concept of a design
building block. A design building block is a way to represent a feature as an input-output
function with tunable parameters. These functions can be polynomials, pieces of a neural
network, look-up tables, etc. These building blocks are identified first and a library of
these building blocks is constructed. This library is continuously updated as more and
more designs are created. This library is then used to construct design solutions for
existing problems using variants of a genetic algorithm or other combinatorial
optimization problem.

We see several critical benefits of this approach to the design community. These are:
1. Library of Design building blocks: Library techniques are commonly used in

modern integrated circuit (IC) design packages. This greatly reduces the number
of combinations with which the designer must deal, thereby speeding up the
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search  process. The design building blocks concept tailors this idea to the specific
design.

2. Innovation is achieved by the use of evolutionary search with stochastic operators.
This greatly reduces the chance of reaching a local solution and solves many of
the problems associated with gradient search techniques.

3. Long-term memory can be provided to the design package to remember good
design solutions for later use via the use of the micro-features of the immune
system, a variant of a genetic search process [1-3].

In summary, one needs the following to achieve automated design:
• an universal representation scheme for representing the building blocks of the design
• an appropriate genetic coding to accommodate the building block concept
• a class of performance criteria and utility functions

Figure 1 presents the overall architecture of the system proposed.

Simple Design Solutions: Many engineering problems have simplified models and
solutions that are routinely used as a first guess approximation of the complete solution.
These solutions could be a rule-of-thumb solution or mathematically optimized using
simpler models. These solutions are then converted to design building blocks to be used
in the evolutionary search. Examples include:

• Linearized models and linear solutions for non-linear control problems.
• Knowledge base of operator rules, etc.

Figure 1. A Concept Diagram for Immunized Design Optimization.
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Existing Design Solutions: Many designs are in a way an improvement over existing
designs. Although this is not true across the whole spectrum, at least the new designs use
subsets of the old system components. These existing designs can then be converted to
design building blocks and used in the search. Examples include:

• Available airfoil shapes for aerodynamic shape optimization
• Available nozzle shapes for Nozzle design.

Component Design Solutions: When sub-components interact, the design solutions are
easier if they are considered as non-interacting. These design solutions will not be the
optimal solutions when interactions are considered but provide a means of arriving at
certain fundamental building blocks. Examples include:

• In simultaneous actuator-sensor placement and control system optimization
problem, one can design the placement separate from control system design.

• Another example is in aerodynamic-propulsion interaction in all-attitude control
problems with thrust vectoring. Once again, the aerodynamic control system can
be designed independent of the propulsion control system and converted to design
building blocks.

Library of Design Building Blocks: Design building blocks are defined as segments of a
design solution that contribute in establishing a good fit to the requirements of the design.
Design Building blocks can be of different order. The order of a building block specifies
the number of specific modules (or parts or some pre-defined configurations) in a
building block. Determining important building blocks is problem dependent and both a
priori knowledge and the ability to identify through genetic search will be useful here.
Once the building blocks are identified, certain preprocessing and statistical analysis can
be carried out to enable a faster search.

Next, we present two examples of design building blocks we have defined in our earlier
studies [1-3].

• Neural Network Building Blocks: Examples of building blocks using neural
connections are shown below. The building blocks are specified using a
representation scheme that uses a neuron as the basic processing element. Thus
the Order 1 building block consists of two neurons and the relationship between
them. In the case of Neural Networks, the relationship is the connection strength
and the neurons are characterized by their type (input, hidden, output), the type of
aggregation, and activation functions.
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• Aerodynamic shape optimization Building Blocks: For airfoil optimization,
satisfactory results have been obtained using an array of Bezier curves for the
definition of the parameterized shapes. A Bezier polynomial  of order n is defined
by
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iP ’s ar the vertices of the Bezier control polygon. Given the above

parameterization, the design building blocks can be represented by iP  or a family

of iP ’s. Similar to neural network building blocks, Order 1 building block will be

just one iP , Order 2 will be two iP ’s and so on.

Utility Functions, etc. To evaluate the designs produced by the genetic search, a series of
performance measures and constraints have to be defined. Due to the ability of
evolutionary algorithms to search through non-continuous spaces, both traditional and
nontraditional measures could be easily combined.

4 Intelligent Maneuvering
Over the past several years, various adaptive control techniques have been developed
which are capable of accommodating a wide range of damage or failure conditions [4-6].
These approaches apply techniques, such as neural networks, fuzzy logic, and parameter
identification, to improve aircraft stability and control under varying conditions.  While
these approaches address the continuous-time aspects of “how to control” an aircraft,
they do not address the discrete-time strategic and tactical decision-making aspects of
“how to fly” an aircraft.  The outer-loop control and flight planning portions of flight are
normally left to conventional autopilots and waypoint-following flight management
systems.

4.1 The Problem

Current levels of automation allow pilots to assign direct tasks to automatic systems, such
as autopilots and flight management systems.  These automated systems have been used
in commercial aircraft for a number of years.  While their design can incorporate many
aspects of a pilot’s experience, they do not possess the reasoning or learning abilities of a
pilot.  As a result, pilots are still responsible for supervising the performance of these
systems as well as providing direction in the event of required changes.  By applying
intelligent methods of automation, pilots, ground-based operators, or autonomous
executives can defer the responsibilities from performing and supervising tasks, to focus
on managing goals and objectives.

4.2 A Solution

In order to make reliable decisions when flying aircraft under varying conditions,
intelligent technologies must be applied which are capable of responding to changing
goals and objectives, while taking correction actions in the presence of internal and
external events.  Multiple methods, such as heuristics, artificial intelligence concepts, and
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other soft computing techniques, can be applied in order to replace the experience,
reasoning and learning abilities of pilots.  Just as pilots use different mental approaches
when performing various tasks, different intelligent automation techniques can be applied
which correspond to the computational nature and time restrictions associated with those
tasks.  One method of organizing various intelligent techniques is to establish a tiered
architecture, with separate deliberative and reactive decision-making layers.

System Architecture: In terms of achieving a flight-path goal, a pilot’s behavior can be
captured through a layered model consisting of discrete-time strategic planning and
tactical maneuvering, and continuous-time manual control (Figure 2) [7].  The discrete
nature of strategic and tactical behaviors allows for automated decision-making
techniques to be applied.  Furthermore since strategic planning decisions are less time-
critical, more computationally intensive approaches can be utilized.  All of the real-time
processing elements can be isolated in the automation of manual control.

Figure 2. Pilot Behavior Hierarchy

Figure 3 shows the resulting conceptual integrated architecture. Strategic technologies
would perform longer-term flight planning, in order to meet dynamic mission goals and
objectives, while avoiding obstacles and staying within performance boundaries.  Tactical
technologies would perform time-critical flight path operations, including aggressive
maneuvers in the presence of unexpected obstacles.  Conventional and adaptive control
techniques would be used to automate the manual control task of the pilot, through the
automated selection of flight modes and targets.

Strategic Planning: From a pilot’s point of view, any flight can be thought of as a plan of
turns, descents, and other discrete actions.  These actions alter the continuous flight-path
or aircraft trajectory, until desired goals are reached.  Actions are not limited to merely
changes in the aircraft speed and orientation.  Some actions also change the aircraft
configuration itself, such as extension of flaps and gears or the dumping of excess fuel.
Various trajectory specialists could be used to produce candidate flight path segments,
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representing the “experience” of a pilot.  The selection criteria would be based on
mission goals and constraints provided by a pilot, ground-based operator, or autonomous
executive.

Figure 3. A Concept Diagram for an Integrated Architecture

Tactical Maneuvering: At the highest level, the pilot compares the commanded flight-
path with that of the current aircraft and selects the maneuvers capable of achieving that
command.  Pilots use their knowledge of aircraft capabilities and of near-optimal
maneuvering strategies in order to select the necessary actions.  Various methods could
be used to select the necessary maneuvers.  A maneuver database, also representing the
“experience” of a pilot, could be used to provide pre-canned, or automatically generated,
maneuvering elements and established sequences.  Vehicle models can be used to provide
the necessary predictive information for decision-making, representing the equivalent of
a pilot’s “understanding” of the internal performance of the aircraft.  Appropriate flight
modes and targets would be sent to the autopilot system, when necessary to initiate the
desired actions.

Automatic Controls: Conventional control techniques can be used to automate the
continuous-time control task of the pilot.  However, various adaptive control techniques
can also be used to provide the “learning” ability of a pilot.  These techniques have the
potential of improving handing qualities, and thereby increasing the accuracy of
simplified closed-loop models used for decision-making.

5 Society of Prediction Agents
Prediction or forecasting is concerned with using the knowledge of present and past
events to make calculated estimates of future events. Prediction is an universal
phenomenon used in low level cognitive tasks such as vision, and perception, and high
level cognitive tasks such as planning and making inferences. The inherent subjectivity,
randomness, domain dependencies, and uncertainties makes the prediction problem
extremely difficult and challenging to the scientist and the engineer. Moreover, often
there are multiple sources of prediction with varying degrees of reliability and confidence
[8,10,11,12,14]. There are two distinct prediction techniques, namely qualitative and
quantitative.  Qualitative techniques are referred to as judgmental, technological, or non-
statistical and usually depend on expert opinion. Examples of such techniques include
decision matrices, S-curves, game theory, systems analysis, Delphi method (jury of
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executive opinion method), and more recent fuzzy decision support expert systems [8].
Quantitative prediction techniques are based on the assumption of historical continuity.
Options include time series, regression, and combinations of the two.

5.1 The Problem

In aeronautics applications prediction techniques vary from a simple need to predict an
aerodynamic derivative to more complex situation such as fault predictions. In space
applications, prediction applications are more complex. Since the information sources can
be very varied, it is not sufficient to provide just human-like characteristics atop the
prediction technologies, we need to a go a step further and provide the capability of a
group of experts to arrive at a prediction. This task is quite challenging.

5.2 A Solution

More recent work related to a group prediction includes the Fuzzy Multiple Criteria
Group Decision Making (FMCGDM) based prediction proposed by Satyadas [7] that
introduces the notion of a group of expert agents selecting the appropriate prediction
from a pool of predictions. This is a hybrid model with a collaboration framework at the
highest level and various multi-sources of prediction at lower levels.

The FMCGDM equations can be defined as follows: Given n fuzzy rules

R= [r1, r2,......., rn],     where

rn= IF xn1 AND/OR xn2 AND/OR xnj THEN yn1 AND yn2...ynk.,    each consisting of

j   inputs/states/antecedents/premises           X=[x1, x2,… xj],
k  outputs/actions/consequents/conclusions Y=[y1,y2, .... yk],

an universe of discourse resolution of p steps;    the state vector

S = [s1, s2, ...sn],      where

sn = xn1 AND/OR xn2 AND/OR...xnj         and the fuzzy action curve set

A=[a1,a2,....an],  where

an = [zn1, zn2, ...znp]

is obtained by applying fuzzy implication on S over the universe of discourse.
Appropriate fuzzy aggregation (example: Max) and defuzzification (example: Center of
Area) algorithms can be applied on A to obtain a crisp output. The fuzzy membership
function parameters and the rule structure can be learned using evolutionary algorithms.
A weight matrix W[j+k,i] may be used to capture the weightage provided by i members
of the group on the j+k criteria, a weight matrix X[n,i] may be used to identify the
importance of each rule. Techniques such as logarithmic regression or Saaty's AHP may
be employed to apply the weights on to the fuzzy rules.
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Given u sources of prediction, the above-described fuzzy system will provide a measure
of importance for each of the prediction as its output. Appropriate ranking and selection
techniques have to be used to compute the final prediction. The following technology
issues need to be addressed:
1. Given that there are achievable multi dimensional levels of Smart Prediction Agents,

what are the best set of building blocks that will enable easy implementation of these
Predictors.

2. Once these building blocks are defined and developed, develop a set of intelligent
prediction algorithms that integrate these building blocks. These shall be uniquely
indexed using the Smart Prediction Agent (SPA) rating given in Table 1. The
relevance and value of the algorithms are context dependent.

3. The implementation challenge will be to ensure component-based architecture and
standards that will allow interoperability and meets non-functional requirements such
as scalability, security, reliability, and the like.

The multi dimensional levels of smart prediction presented in [8] (See Table 1 below)
provides a means for qualifying and quantifying smart prediction techniques. We believe
that a practical way to define the predictive capabilities of a system is to approach it as
having multi dimensional levels of capabilities for self-improvement, problem solving,
knowledge and domain bounds, and trade-offs. The capabilities are additive towards
higher levels.

Any smart prediction agent may be identified as SPA[p,i,k,s,r] where p=problem solving,
i=self-improvement, k=knowledge building, s=severity/domain bounds, and r=risk
management/trade-off. This enables a SPA rating for various prediction systems based on
the values of p, i, k, s, and r.

Table 1.  Levels of Dimensions for Smart Prediction

Level Problem
Solving

Self-
Improvement

Knowledge
Building

Severity Risk Management/
Trade Offs

0 Uni-variate Statistical A priori Crisp compute Accuracy/Trend
1 Multi-Variate Generalized Derived Imprecise Local/distributed
2 Patterns/Cases Adaptive Inferred Incomplete Temporal
3 Stationarity Optimized Discovered Subjective Spatial
4 Multi-source Plan Complex Static/Dynamic
5 Causality Chaotic Maximum/Avg

Problem Solving Dimension for Smart Prediction
Six levels have been identified in this dimension (Table 1). The uni-variate and multi-
variate refers to the dependent variables. Patterns/cases with the associated behavior
present a higher difficulty level for problem solving. Stationarity and ergodicity issues
present the next level of challenge. A stationary process will have time-invariant mean
and variance. The covariance between values of the process at two time points will
depend only on the distance between these time points and not on time itself. The
ergodicity assumption requires that values of the process sufficiently far apart in time are
almost un-correlated so that averaging a time series through time continually adds new
and useful information to the average. This is followed by multiple sources of prediction
that includes the system approach.
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Self-Improvement Dimension for Smart Prediction
The levels identified have been motivated by the levels of intelligent control [9]. Level 0
relies on statistical information to improve the quality of prediction. The next level
requires generalization capabilities that can be achieved using computational intelligence
techniques such as artificial neural networks. This is followed by adaptive learning
capabilities.  Optimality of prediction, with the goal of minimization or maximization of
a utility function over time, is addressed by Level 3. Coupling to a control module, that
may require modified predictions, is introduced in the next level. Level 4 presents the
planning aspects of self-improvement that provides the ability to perform predictions
based on a plan with the associated goals and risk mitigation strategies.

Knowledge Building Dimension for Smart Prediction
Level 0 relies on a priori knowledge. Various techniques, from ad-hoc to well defined
and complex, from artificial intelligence have been proposed by researchers. Techniques
include memory modules (neural and otherwise) with fixed weights, fixed fuzzy rules
and parameters, and suitable parameters for GA. The generic coding structure of GA is an
attractive feature. Simple derivations based on observed facts are provided in Level 1.
The next level has inference capabilities. Level 3 provide knowledge discovery
capabilities that demand advanced data and text mining features. Learning plays a critical
role here.

Severity Dimensions for Smart Prediction
The severity dimension provides a measure of the domain bounds. The levels start from
crisp computation, imprecise and/or incomplete domains, and subjectivity. Level 4
represents a complex domain that is in the edge of chaos, and level 5 - a chaotic domain.

Risk Management Dimension for Smart Prediction
This dimension address trade-off that promotes risk management. Level 0 trade-off is
between accurate prediction and just being able to predict the trend (whether it is upward
or downward). The local/distributed aspect of the problem/solution space is introduced in
Level 1. This is followed by temporal and spatial trade-off. Level 4 mitigates the risks
between static and dynamic prediction. Choices between optimizing predicted values and
just obtaining an average prediction is provided in Level 5.

We believe some of the challenges include:
• Challenges in introducing the upper layer that brings together prediction, control,

and other capabilities.
• Challenges in cognition that will be required to be solved.
• Other aspects of the aircraft and linkages with the base - where adding smartness

is valuable?

6 Real-time optimization under uncertainty

6.1 The Problem

Building large-scale intelligent solutions for optimal decision-making and control is of
great importance to the advancement of operational autonomous systems. Werbos[15]
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has addressed an important formulation for achieving higher-order intelligence in these
systems. The outlined approach extends the capabilities of adaptive critics1 [16-18] to
include temporal chunking. Although many researchers believe that real-time
optimization over time and under uncertainty is a good approach to replicating higher
order intelligence, the current applications of intelligent systems do not reflect the type of
complexity processed by the mammalian brain.

6.2 The Solution

The central theme of the proposed solution is to arrive at a modular architecture for
achieving higher order intelligent decision-making and control. To achieve this, we first
define a MAC (Model-Action-Critic) neuron and extend it to represent a network of these
with associated training signals. For effective autonomous decision making, we need
adaptive control driven by an adaptive critic.

In Figure 4, we present a single MAC (Model-Action-Critic) neuron in which the
interactions within three sub modules and with the external world (fat solid arrows) and
other MACs (fat hollow arrows) are shown. These inputs are available to all the three
modules (M, A, and C). The dashed-lines and the solid lines between the three sub
modules denote information being passed for different time periods to keep in mind the
temporal nature of the training.

                                                
1 An adaptive critic adapts itself and at the same time it outputs a performance measure
that can be used to update a controller network and/or a decision network. Howard’s
formulation of dynamic programming [19] is the inspiration behind the simplest version
of adaptive critics, namely, Heuristic Dynamic Programming (HDP) critics.

( )J x Max
u

U x J x x f x u noiset
t

PM t t t t t= + =













+ +( ) ( ) ( , , )γ 1 1

where xt  is the state vector, ut  is the control vector, UPM(.) is the one stage

Performance Measure function,  f(.,.,.) is the model of the system, and ( )γ γ0 1< ≤ is the

discount factor.

Figure 4. Model-Action-Critic module represented as one computational entity
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Once we identify MAC as one computational entity, network of these critics can
be built by specifying either the partitioning before hand (an example is given later) or
defining the desired hierarchy (number of MAC neurons, number of layers, etc.). Once
these decisions have been taken, the MAC neurons can be assembled as a network of
critics.

Temporal Chunking for Brain-like Intelligence
Given a policy π  (control or decision strategy) and a probability transition matrix P , one

can write the Howard’s formulation of the recursive equation as:
(2) )))(1/()(( ππππ JrPUJ T ++=

Now if substitute )1/()( rPM T += ππ , we have

(3) )( ππππ JMUJ +=

The above equation represents a fixed policy with just value updates. In a policy update,
the control u (or decision d) is chosen to optimize (maximize or minimize) the right hand
side of the equation.

In equation 3, if the matrix πM  is sparse (which is usually the case), one can partition the

state space into smaller blocks within which the transition probabilities are non-zero and
transition from one block to the other happens only for exit and entry states. This
partition could be defined a priori or learnt on-line (which is a much more difficult task).
In some problems, as shown later, such partitions are well understood.

Now let us say we have two partitioned blocks A and B, with A representing the current
block in which the system is operating and B representing a block to which the system
could transition to. Starting from Block A, we have two transition probability matrices,
PA representing transition probability within block A and PAB the probability of transition
into block B. Similar to M defined earlier, one can define MA and MAB  matrices and
derive an equation similar to equation 3,

(5) )(
B

AB

A

A

AA
JMJMUJ ππππ ++=

In the above equation, the notation 
A

V represents a portion of the variable vector V  that

applies to states within block A.

If we now extend the partition B to include more blocks, we have

(6) ∑
∈

++=
)(

)(
AnB

B

AB

A

A

AA
JMJMUJ ππππ

where )(AnB ∈  represents the blocks in B that can be transitioned into by states in block
A.
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MACA

MACB
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As shown by Werbos[15], the above equation can be written as,

(7) ∑
∈
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Now one can write the following recursive relations similar to Bellman’s
(8) AA

A

A JMUJ += π and ABAABAB JMMJ +=

Using equations 8a and 8b in conjunction with a learning algorithm, ABA JandJ  can be
updated and thus J  can be calculated using equation 7. Finally, control (or decision) can
be updated based on J .

A simple example: We will define a simple example to illustrate the use of the idea
presented. Let a system consist of two states and one control as shown below.
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and u  is the control.

Note that the system has a clear partition based on the state 2x . Based on this pre-defined

partition, one can design MACA partition  ( 22221 xxx ≤≤ ) and MACB partition

( 23222 xxx ≤≤ ) and can be implemented as shown to the right.

Learning the underlying hierarchy: In many problems, the underlying partitions are
known or can be conceptualized. For true brain-like intelligence, it will be desirable to
learn such partitions. This could be achieved either off-line or on-line. Definitely on-line
implementation will be very difficult to achieve. Off-line synthesis could be achieved in
several ways. One simple way is to use parsimonious networks with pruning capabilities
to learn the internal partitions. Another approach could be clustering via unsupervised
learning.

Decisions and failure accommodation
As suggested by Werbos and others, the partitions can be navigated more efficiently by
including a decision layer in the network of critics. This concept is illustrated below.
Also, failure accommodation could be handled inside of the decision layer. In the figure
shown, we assume that the network behaves like a winner-all type with lateral inhibition
implying that only one of the neurons output the control vector.
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7 Conclusions
In this paper, we presented four problem domains that are well suited for further
advances in intelligent systems. These domains include, design, autonomous
maneuvering, prediction, and decision-making. All of these require advances in
intelligent system technologies to enable higher levels of automation, intelligence, and
application success. All four problem domains defined are accompanied by one possible
approach based on authors’ knowledge and perspective. It is hoped that this will further
advance intelligent system research and development for aerospace applications.

There are definitely several other problem domains where intelligent system technologies
could help but need major advances to achieve high levels of success. Some of these
areas include data-driven inverse design and modeling, autonomous planning and
scheduling, and bio-inspired aerial vehicles.
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numéro de série (par exemple AGARD-AG-315). Des informations analogues, telles que le titre et la date de publication sont
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